Shrimp allergy: beyond avoidance diet

Key words
shrimp; allergy; food; hypersensitivity; immunotherapy; vaccine; tropomyosin

Summary
Currently, the management of people diagnosed with shellfish allergy relies on the avoidance of those foods. HDM immunotherapy has been reported to induce both shrimp allergy in non-allergic patients, and shrimp tolerance in shrimp-allergic patients. This article summarizes therapeutic options other than avoidance diet for shrimp allergic patients available once the diagnostic is established, such as production of hypoallergenic shrimp, use of immunotherapy with modified allergens, probiotics and Chinese herbal formulations.

Corresponding author
David El-Qutob
Unit of Allergy University Hospital of La Plana
Carretera Vila-Real-Burriana Km 0.5
Vila-Real (Castellon) 12540, Spain
Phone: +34 964 3999 61
Fax: +34 964 3576 01
E-mail: elqutob@comv.es

Doi
10.23822/EurAnnACI.1764-1489.16

List of abbreviations/acronyms
House dust mites (HDM)
Specific Immunoglobulin E (sIgE)
Allergen-specific immunotherapy (ASIT)
Sublingual immunotherapy (SLIT)
Chinese herbal formulations (CHF)

Introduction
Popularly, “shellfish” and “seafood” are often used interchangeably, but they mean different things. “Seafood” is a general term that refers to any edible aquatic animals, whereas “shellfish” refers to invertebrate aquatic animals usually fitted with a rigid exoskeleton (crustaceans and mollusks), edible, and likely to be traded for human consumption (1). Crustaceans are classified among arthropods together with arachnids and insects, whereas mollusks include bivalves, gastropods and cephalopods (2). In the last years, shellfish consumption has increased in popularity and frequency worldwide. This growing demand for shellfish, with an increment of their extraction and cultivation, has been accompanied by increasing reports of adverse reactions, many of which of immune mechanism, produced by ingestion or manipulation, affecting both consumers and seafood workers (3-5). Shellfish is one of the leading causes of food allergy, with a prevalence of 2.8-8% among all food allergies (6,7), and it is a common cause of food-induced anaphylaxis (8,9). Cases of shrimp allergy-induced exercise and NSAID-dependent anaphylaxis are described (10,11). Shellfish allergy is much less frequent in children than in adults (12). Anaphylactic reactions are more frequent in young people, atopic individuals and asthmatics (13). The crustaceans (shrimp, lobster and crab) are the main cause of shellfish allergy. Usually, subjects with shrimp hypersensitivity react clinically to other types of crustaceans. Shrimp is the most studied crustacean from an allergenic point of view.
Shrimp allergy: beyond avoidance diet

Allergens

There are no differences between the protein bands from the extracts of boiled shrimp water and boiled shrimp (14). However, there are differences between extracts from cooked and raw shrimp (15).

Tropomyosin (Pen a 1), a protein from muscle, has been the first shrimp allergen detected (16). It is a major allergen of 38-41 kDa, and it is responsible for cross-reactivity between members of the shellfish family, particularly among the crustaceans. This led to its definition as an invertebrate panallergen (17). Tropomyosin has also been defined as a major allergen in other crustaceans (18), with very high homologies, up to 98%, among crustacean species including crawfish, crab and lobster (19,20). Tropomyosin is a panallergen responsible for the cross-reactivity between the members of the Arthropoda class, including shrimp (Pen a 1) and house dust mites (HDM) (Der p 10, Der f 10). The prevalence of shrimp allergy is higher in regions with high prevalence of HDM allergy, such as Canarian Islands (21). In fact, almost all patients sensitized to shrimp showed positive skin prick test to HDM with/without clinical relevance, and 20-29% of HDM allergic patients showed sensitization to Der p 10 (22), tropomyosin from the HDM Dermatophagoides pteronyssinus. Frequently, HDM allergic patients are sensitized to shellfish with food tolerance. It is thought that inhaled tropomyosins from HDM are the primary sensitizer for shellfish allergy in warm and humid tropical climates (23). There is also an important cross-reactivity with HDM Der p 10 and tropomyosin Pen a 1. There is not cross-reactivity between tropomyosins from filogenetically distant species. Therefore, tropomyosin from vertebrates is not allergenic.

Other minor allergens have been identified and characterized in shrimp. Arginine kinase is a 40 kDa allergen (Pen m 2) from muscle identified in shrimp (24,25) but also in mollusks (26). It was recognized in 27% out of a group of shrimp allergic subjects (25). In 2008, Ayuso et al. identified in Pacific white shrimp (Litopenaeus vannamei), a might light chain (Lit v 3) with high similarity to Bla g 8, a cockroach myosin light chain (27). Immunoblotting demonstrated immunoglobulin E (IgE) binding to a 20-kDa shrimp protein in 21 (55%) out of 38 sera of shrimp allergic subjects. One year later, the same group of investigators identified a sarcoplasmic-binding protein (Lit v 4) in Litopenaeus vannamei (28). Lit v 4 presents structural homology with Pen a 4 of Peneaus aztecus (29). Immunoblotting demonstrated IgE binding to a 20 kDa shrimp protein in 31 out of 52 (59.6%) sera of the shrimp allergic individuals. In addition, α-actinin, β-actin, fructose biphosphate aldolase, and ubiquitin have been identified as allergens in the Solenocera melantho (red shrimp) species (30), and other authors have identified the hemocyanin C subunit as an allergen in our shrimp-allergic patients (31). Hemocyanin is a hemolymph allergen with sequence homology of 62.5 - 100% with several crustacea hemocyanins (32). Paramyosin, an invertebrate-specific myofibrillar protein, is a thermo-labile 100 kDa allergen recently identified as an allergen in various shellfish (33). An amino acid sequence homology as high as 70% was recognized between disc abalone Haliotis discus discus and Mediterranean mussel paramyosins.

Currently, the role of the allergens different to tropomyosin in shrimp allergy has not yet been well defined. Asero et al. showed that Italian adult shrimp-allergic individuals react to a wide variety of allergens, that tropomyosin is the relevant allergen only in a minority of patients, and that a large proportion of subjects react to not-identified to date high molecular weight allergen proteins (34).

Current treatment for shrimp allergy

This section will not review the treatment of an acute allergic reaction, but the two currently existing etiological therapeutic approaches: desensitization and avoidance.

Desensitization

The natural course of shrimp allergy is to persist over time. Disappearance of reactivity to shrimp is rare. It is firmly established that Allergen Specific Immunotherapy (ASIT) is the only etiological treatment that can alter the natural course of allergic diseases, such as allergic rhino-conjunctivitis and asthma (35,36). The beneficial or harmful effect of HDM ASIT in shrimp allergy is still controversial. Usually, commercial HDM extracts used for SCIT contain quantified levels of group 1 and 2 allergens, but may also include low concentrations of other sensitizing allergens, such as tropomyosin (37). Pevec et al. studied 56 HDM-allergic patients treated with SCIT using HDM extract during 3 - 5.5 years. Specific IgE (sIgE) to tropomyosin were found only in 5 patients, without clinical importance. Authors concluded that ASIT using HDM extracts does not induce clinically relevant sensitization to tropomyosin. Van Ree et al. studied 17 sera of HDM allergic patients receiving HDM immunotherapy (38). Serum samples were taken at the start of immunotherapy and 14-20 months later. At the beginning of immunotherapy, specific IgE for shrimp were positive in 3/17 subjects. After 14 to 20 months of immunotherapy, IgE responses for Der p 1 and Der p 2 were not increased. The 3 patients with initial positive specific IgE to shrimp were the only patients who had clinical symptoms after eating shrimps. So, it seems that immunotherapy for HDM does not increase the risk of re-action after ingestion of shrimp in previously non-sensitized patients. In a study with HDM allergic individuals non-sensitized to tropomyosin, Asero et al. observed that injection SIT with HDM extracts did not seem to induce de novo tropomyosin sensitization in mite-allergic patients after three years of ASIT
D. El-Qutob

reducing the risk of reaction when consumed by allergic pa-

tients. You can obtain hypoallergenic foods by physical, chemi-
cal and genetic modification procedures (42).

Physical treatments

Usui et al. investigated the effects of tropomyosin concentra-
tions from cooked or raw shrimp (43). The risk of shrimp aller-
genic reaction was not reduced significantly by different methods of preparing cooked shrimp.

Chemical procedures: enzymatic hydrolysis

Through enzymatic hydrolysis of shrimp, hypoallergenic prod-
ucts could be obtained which, while retaining some residual al-
lergenicity, are tolerated by most shrimp allergic patients. Wang used proteases such as trypsin, papain and bromelain individ-
ually, to hydrolyze South American shrimp proteins (44). The results showed that hydrolysates from South American shrimp proteins digested by each of the three proteases, better with pa-
pain, could result in an attenuation of general allergic reactions.

Modified immunotherapy

Vaccination with DNA plasmids

Wai et al. constructed two hypoallergens of the shrimp tropo-
myosin Met e 1: MEM49 and MED171, and expressed them in plasmid pCI-Neo (45). Authors concluded that hypoal-
lergen-based DNA vaccines could effectively protect against tropomyosin sensitization in mice via the establishment of Th1-oriented responses, recruitment of regulatory T cells, and induction of blocking IgG antibodies.

T cell epitope immunotherapy

Peptide-based immunotherapy (PIT) has been found to suc-
cessfully treat allergic patients, and there are many opportuni-
ties for the application of PIT in this category (46). Wai et al. identified the immunodominant T cell epitopes of tropomyosin of *Metapenaeus ensis* (Met e 1), and evaluated their therapeutic effect in a Balb/c mouse model of Met e 1 hypersensitivi-
(47). Mice treated with the T cell epitope peptide mixture demonstrated an amelioration of systemic allergic symptoms, and a significant reduction in Th2-associated antibody and cy-
tokine responses. More investigators are identifying CD4 T cell shrimp tropomyosin-derived epitopes for the design of PIT of shrimp-allergic patients (48).

Probiotics

The beneficial effect of probiotics has been demonstrated in the treatment of allergic diseases. Probiotics interact with the host immune system and may provide preventive and therapeutic effects on allergic diseases (49). Schiavi et al. investigated the therapeutic potential of VSL#3 probiotic mixture on specific immune responses and anaphylactic reaction induced in mice.
by shrimp tropomyosin (50). Oral therapeutic administration of VSL#3 to tropomyosin sensitized mice significantly reduces symptom score and histamine release in faeces after allergen challenge. Measurements of IL-4, IL-5 and IL-13 were significantly reduced, whereas FOXP3 and IL-27 mRNA expression, IL-10, TGF-β and IFN-γ showed higher levels.

Chinese Herbal Formulations (CHF)

Plants have been used for medicinal purposes for thousands of years. Traditional Chinese medicine, which has been practiced for centuries in Asia, has awakened the interest of Western countries as an alternative or complementary therapy for some diseases, including allergic diseases such as food allergy. Li et al. tested the effect of a mixture of 11 herbs in an experimental model of mice with allergy to peanut. In this study protection was observed in the mouse, avoiding the appearance of anaphylactic reaction in the test of provocation with peanut (51). In addition, after two weeks of treatment levels of specific IgE were significantly reduced, and remained low for at least 4 weeks after discontinuation of treatment. Also a reduction in the synthesis of cytokines Th2, IL-4, IL-5 and IL-13 was observed, without altered IFN-γ production. A major limitation of the current presentation of CHF is the inconveniently high daily dose. Therapeutic use of Chinese herbal formulations on food allergy is currently being investigated in several clinical trials with promising results in several food allergies including shellfish allergy (52).

In Table I we present the future therapies for shrimp allergy included in this review, summarized.

Conclusions

This article reviews as current as possible the future therapies for shrimp allergy. At the moment, there is a therapeutic need for this food allergy. The attempts in exploring new options, as alternative therapy, will lead to new treatments for this and for other food allergies. Our food allergic patients have been expecting for it for too many years.

References

Table I - Future therapies for shrimp allergy.

<table>
<thead>
<tr>
<th>Therapy Type</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production of hypoallergenic shrimp</td>
<td>physical treatments</td>
</tr>
<tr>
<td>Modified immunotherapy</td>
<td>chemical procedures</td>
</tr>
<tr>
<td>Probiotics</td>
<td>vaccination with DNA plasmids</td>
</tr>
<tr>
<td>Chinese herbal formulations</td>
<td>T cell epitope immunotherapy</td>
</tr>
</tbody>
</table>

In Table I we present the future therapies for shrimp allergy included in this review, summarized.

