Dear Editor,

both the paper by Pereira Santos et al and the Editorial on the latest issue of this Journal, stressed on the essential, fairly irreplaceable role of basophil activation test (BAT) in allergy diagnosis (1,2). Certainly, BAT is a cell-based test and in this sense it should give fundamental insights about the role of these circulating leukocytes in hypersensitivity reactions, chronic allergy and anaphylaxis (3). However, as many other analytical assays, even BAT has its Achilles’ heel.

Although a great deal of efforts have been attempted in order to improve the diagnostic potential of BAT, principally regarding its flow cytometry (FC) approach (4,5), operators are still using CD63% as the main tuner of the analytical decision if the activated basophils in BAT are signalling an allergic response. CD63% is an analytical algorhythm that raised some criticism and concern principally because of its relationship with an arbitrary threshold, closely dependent on the resting, non activated state of basophils, used as a negative reference control (6). Tracing a landmark of the resting, full activable basophil in a BAT is particularly difficult and attempts were suggested to address this cumbersome issue in BAT interpretation (7,8). In few words, it is practically impossible to set basophil activation on a standard resting population, because of the many reasons related to pre-analytical handling, frequency of releaser or non releaser subjects within the population, intrinsic variability due to CD63 vesicle endowment.

The paper of Pereira Santos evaluated single asthmatic patients treated with omalizumab, and raised another fundamental issue in the correct use of BAT in allergy. Xolair® Omalizumab is able to reduce both serum IgEs and FceRs on basophils and dendritic cells (DCs), therefore, according to the Authors, a CD63-based BAT should probe the effect of omalizumab on basophil reactivity, following the anti-Cε3-IgE MoAbs treatment (1). However, the same Authors addressed the critical issue that BAT does not match completely the effect of omalizumab on a IgE-mediated response. The intrinsic variability in the allergic response performed by basophils, particularly addressed in the Editorial (2), might hinder the presumptive IgE/CD63 linear relationship, as expected if considering the close relationship between allergic response and CD63 membrane up-regulation. Yet, BAT is evaluated through the behaviour of a marker that does not depend exclusively on the membrane FcεRI/IgE complex expression.

S. Chirumbolo

Department of Medicine, Unit of Geriatry, University of Verona, Italy

Corresponding author
Salvatore Chirumbolo
University Laboratory of Medical Research (LURM)
Unit of Geriatric Medicine, Room 41
Department of Medicine University of Verona, Italy
Policlinico GB Rossi
Piazzale L.A. Scuro 10, 37134 Verona, Italy
Phone: +39 045 8128 456
E-mail: salvatore.chirumbolo@univr.it
and receptor recycling mechanism (9,10). Pereira Santos and colleagues did not deepen how a marked reduction in FcεRs on DCs may affect BAT performance in patients treated with omalizumab, furthermore they showed both myeloid DCs and plasmacytoid DCs with only using CD123 and HLA-DR markers, without employing CD11c (11,12), and probably they should explain better DCs capture in FC, if a CD123/HLA-DR gate on the CD45⁺ area allows to capture basophils, as previously reported (13). A decrease in serum IgE does not appear to be linearly related to IgE-mediated response in basophils. The use of an anti-FcεRI in an FC approach seems intriguing, in order to set basophils about their membrane receptor binding ability, but this attempt may result in cumbersome and time consuming procedures. An interesting suggestion might come apparently from using an anti-IgE monoclonal antibody able to react with circulating IgEs and membrane IgE/CD23 complexes, such as the mAb 8D6 (14). In this circumstance, it is possible to deepen the role of FcεRII (CD23), which is not expressed by basophils, on the allergy mechanism and BAT when a monoclonal humanized anti-IgE antibody is used. The mAb 8D6 can compete with omalizumab in binding the conformational epitope of IgE-CH3 domain, and as omalizumab it does not interact with membrane FcεRI-bound IgEs but can bind FcεRII-IgEs (14). Although 8D6 does not activate basophils in vitro (14), its use may be fundamental in assessing the role of circulating IgEs in omalizumab-treated patients and in their related BAT. Activated B cells express CD23, the isoform CD23a, the cell recycling of which is strictly related with HLA-DR and antigen presentation and moreover CD23 is fundamental to enhance the IgE-antigen presentation to T-cells (15). IgEs protect CD23 from cleavage and stabilize its intracellular recycling, then its evaluation might give insights into the involvement of B/T cells relationship in allergy and shed a light on the puzzling issue if circulating IgEs, escaped to omalizumab, may be able to elicit an immune response, as recent reports have shown that omalizumab is able to target B-cells membrane IgEs (15-17). Yet, the role of CD23 should be fundamental in ensuring a residual IgE-mediated response in the absence of circulating IgEs and their interactions with high affinity FcεRs. However, we cannot be sure, in this regard, if Mab 8D6 may give a sound, further contribution in the comprehension of the immune response of omalizumab-treated patients, aside from the direct responsiveness of FcεRI-bearing cells, such as basophils or mast-cells, due to the complexity of the immune response involving B and T cells.

Notwithstanding, when CD63 is used as the main marker to evaluate basophil response to omalizumab treatment, BAT does not appears to well correlate with FcεRI (PT2, figure 1), despite the rapid decrease of IgE high affinity receptor following one month treatment (1). This observation may raise some concern about the diagnostic capability of BAT in omalizumab follow up by the simple detection of CD63%. Other tetraspanins, such as CD81/TAPA-1, might be considered or added as possible molecules more closely related to the FcεRI-IgE mediated response in basophils (18,19). Yet, the role of other well known activation markers such as CD203c, CD164, CD193 (CCR3), should be better evaluated in BAT used to investigate omalizumab therapy (20), probably this issue should add more interesting insights to the evidence recently reported (1).

The quality of basophil response in a BAT depends on a huge amount of unpredictable factors, including the complexity of the acquired immune response involving B cells. A recent paper suggested the role of CD63-containing granules in assessing the baseline level of “responsiveness” (7) and in this sense even the interesting observation of Maietta meets this issue (2), though mainly related to IgE receptors. Then, the major concern may be considered the search for a zero point, which any activation event should be referred to.

In my opinion, this zero point is restricted to the particular circumstance and individual’s ability to respond and cannot be completely standardized. Apparently, this circumstance appears to prevent the setting of an optimal cut off for CD63 up-regulation. And actually this seems to be the major criticism to address, in order to optimize BAT in allergy (6). Most probably, the researcher should look for further activation markers, which exhibit a closer relationship with FcεRI activity and turn over, by evaluating MFI’s and optimal FC algorithms on fluorescence (without naive percentage assumptions) or ultimately by improving the predictive and diagnostic value of CD63 marker.

BAT might yet allow researchers in the achievement of important data about basophil involvement in allergy, immunotherapy and anaphylaxis, although investigation needs more insights.

References

Is basophil activation test (BAT) really useful for allergy diagnosis?

109


