

European Annals of Allergy and Clinical Immunology

THE OFFICIAL JOURNAL OF AAIITO | ASSOCIAZIONE ALLERGOLOGI IMMUNOLOGI ITALIANI TERRITORIALI E OSPEDALIERI
THE OFFICIAL JOURNAL OF SPAIC | SOCIEDADE PORTUGUESA DE ALERGOLOGIA E IMUNOLOGIA CLINICA

2023 Journal Impact Factor: 2.6

The added value of targeting airway hyperresponsiveness by blocking thymic stromal lymphopoietin (TSLP) in the management of severe asthma

Functional characterization of complete and immunodominant epitopes of a novel pollen allergen from *Parthenium hysterophorus*

Chronic rhinosinusitis with nasal polyposis and biological agents: the ARIA-ITALY survey

Allergens weaning: what is missing from commercial baby food?

Baricitinib for atopic dermatitis in real life: effectiveness, safety profile, and adherence

Anti-IL5/5R in the treatment of chronic eosinophilic pneumonia and severe asthma

European Annals of Allergy and Clinical Immunology

The online submission system

European Annals of Allergy and Clinical Immunology uses an online submission and review system for all papers evaluation.

Electronic submission allows a more efficient processing of manuscripts and offers Authors the option to track the progress of the review process whenever they need to. The link to the editorial system is http://eaaci.edmgr.com, it is also available on the Journal website: **www.eurannallergyimm.com**.

The Authors are invited to submit their manuscripts through the online editorial system; manuscripts sent by e-mail, post or fax are not considered for publication. All the Authors should read carefully the Guide for Authors before starting their submissions. Full information about the manuscript preparation are available on the Journal website. During submission, Authors will be first asked to select the article type, enter the manuscript title and provide Author information. Through a menu, a general topic area should be selected: these will help to match manuscripts to the best available editors and reviewers. Reviewers will access papers via the editorial system platform and will be invited and sent to it by email.

Full Authors Guidelines and the online Submission System link, are available on the Journal website:

www.eurannallergyimm.com

	Allergy and Clinical Immunology PDATE MY INFORMATION • JOURNAL OVERVIEW Not logged in.	©
	NUSCRIPT • INSTRUCTIONS FOR AUTHORS • PRIVACY	
	European Annals of Allergy and Clinical Immunology AL OF AAITO ASSOCIAZIONE ITALIANA ALLERGOLOGI IMMUNOLOGI TERRITORIALI E OSPEDALIERI JOURNAL OF SPAIC SOCIEDADE PORTUGUESA DE ALERGOLOGIA E IMUNOLOGIA CLINICA	
Journal Home	Insert Special Character	
Instructions for Authors	Please Enter the Following	
EM Author Tutorial	Username: Password:	
EM Reviewer Tutorial		
System Requirements	Author Login Reviewer Login Editor Login Publisher Login	
File Formats		
Contact	Send Login Details Register Now Login Help	
	Software Copyright © 2021 Aries Systems Corporation. Aries Privacy Policy Data Use Privacy Policy	
European Annals "Allergy and Clinical Immunology	European Annals "Alleng and Clinical Immunology First-time users	
1/2014 See a	Please click on the word "Register" in the navigation bar at the top of the page and enter the requested information. Upon successful registration, you will be sent an e-mail with instructions to verify your registration. NOTE: If you received an e-mail from us with an assigned user ID and password, DO NOT REGISTER AGAIN. Simply use that information to login. Usernames and passwords may be changed after registration (see instructions below).	
Market and the second s	Repeat users Please click the "Login" button from the menu above and proceed as appropriate.	-
	Please click the Login button from the menu above and proceed as appropriate.	
	Authors	

submit your manuscript and track its progress through the system.

Please click the "Login" button from the menu above and login to the system as "Author." You may then

European Annals of Allergy and Clinical Immunology

www.eurannallergyimm.com

THE OFFICIAL JOURNAL OF AAIITO ASSOCIAZIONE ALLERGOLOGI IMMUNOLOGI ITALIANI TERRITORIALI E OSPEDALIERI THE OFFICIAL JOURNAL OF SPAIC

SOCIEDADE PORTUGUESA DE ALERGOLOGIA E IMUNOLOGIA CLINICA

EDITORS IN CHIEF

M. B. Bilò (Italy) P. Carreiro-Martins (Portugal)

DEPUTY EDITORS

R. Rodrigues Alves (Portugal) D. Villalta (Italy)

ASSOCIATE EDITORS

R. Asero (Italy) M. Branco Ferreira (Portugal)

L. Cecchi (Italy)

E. Scala (Italy)

D. Solé (Brasil)

G. Sturm (Austria)

EDITORIAL BOARD

I. Agache (Romania)

I. Annesi Maesano (France)

L. Antonicelli (Italy)

G. Azizi (Iran)

L.M. Borrego (Portugal)

K. Brockow (Germany)

S. Bavbek (Turkey)

E. Cichocka-Jarosz (Poland)

M. Cugno (Italy)

L. Delgado (Portugal)

P. Demoly (France)

G. D'Amato (Italy) S. Durham (UK)

M. Faber (Belgium)

M. Fernandez-Rivas (Spain)

J. Fonseca (Portugal)

ZS. Gao (China) G.P. Girolomoni (Italy)

E. Goudouris (Brasil)

A. Grumach (Brasil)

G. Kostantinou (Greece)

F. Levi-Shaffer (Israel)

M. Maurer (Germany)

L. Mayorga (Spain)

C. Micheletto (Italy)

M. Morais de Almeida (Portugal)

G. Moscato (Italy)

A. Musarra (Italy)

C. Nunes (Portugal)

M. Ollert (Lussemburgo)

P. Parronchi (Italy) G. Passalacqua (Italy)

E. Pedro (Portugal)

A. Perino (Italy)

O. Quercia (Italy)

A. Romano (Italy)

G. Scadding (UK)

A. Todo Bom (Portugal)

A. Tedeschi (Italy) R. van Ree (Netherland)

D. Villalta (Italy) S. Voltolini (Italy)

FOUNDERS

F. Bonifazi (Italy) A. Sabbah (France)

Editors in Chief and Managing Directors

Maria Beatrice Bilò P. Carreiro-Martins

Chief Executive Officer

Ludovico Baldessin

Editorial Coordinator

Barbara Moret

Publishing Editor

Jessica Guenzi

j.guenzi@lswr.it Ph. 0039 3491716011

EDRA SpA

Via G. Spadolini, 7

20141 Milano - Italy

Tel. 0039 (0)2-88184.1

Fax 0039 (0)2-88184.301

www.edizioniedra.it

"European Annals of Allergy and Clinical Immunology" registered at Tribunale di Milano - n. 336 on 22.10.2014

Sales

dircom@lswr.it

Subscription

abbonamentiedra@lswr.it

Ph. 0039 (0)2-88184.317

Italy subscription: 60 euro

World subscription: 85 euro

© 2025 Associazione Allergologi Immunologi Italiani Territoriali e Ospedalieri - AAIITO. Published by EDRA SpA. All rights reserved.

To read our Privacy Policy please visit www.edraspa.it/privacy

The contents of this Journal are indexed in PubMed, Scopus, Embase and Web of Science®

AAIITO

Associazione Allergologi Immunologi Italiani Territoriali e Ospedalieri

DIRECTORY BOARD

President Lorenzo Cecchi

Designated President Francesco Murzilli

Donatella Bignardi Treasurer Oliviero Quercia

Vice President

Past President Riccardo Asero Members Paolo Borrelli Marcello Cilia Maurizio Franchini Francesco Madonna Giuseppe Pingitore Valerio Pravettoni Giuseppe Valenti

Manuel Branco-Ferreira

Sociedade Portuguesa de Alergologia e Imunologia Clínica

DIRECTORY BOARD

President Ana Morête Past President

João Marques

Treasurer Rodrigo Rodrigues Alves

Secretary-General Pedro Martins

Vice Presidents Secretary-Adjunct José Ferreira Magna Correia Frederico Regateiro

Members João Fonseca Ângela Gaspar Natacha Santos

Table of Contents

Review			
The added value of targeting airway hyperresponsiveness by blocking thymic stromal lymphopoietin (TSLP) in the management of severe asthma			
Adriano Vaghi, Maria Beatrice Bilò, Francesco Bini, Lorenzo Cecchi, Claudio Micheletto, Antonino Musarra			
Original articles			
Functional characterization of complete and immunodominant epitopes of a novel pollen allergen from <i>Parthenium hysterophorus</i>			
Chronic rhinosinusitis with nasal polyposis and biological agents: the ARIA-ITALY survey			
Allergens weaning: what is missing from commercial baby food?			
Letters to the Editor			
Baricitinib for atopic dermatitis in real life: effectiveness, safety profile, and adherence			
Anti-IL5/5R in the treatment of chronic eosinophilic pneumonia and severe asthma			

Adriano Vaghi¹, Maria Beatrice Bilò^{2,3}, Francesco Bini⁴, Lorenzo Cecchi⁵, Claudio Micheletto⁶, Antonino Musarra⁷

The added value of targeting airway hyperresponsiveness by blocking thymic stromal lymphopoietin (TSLP) in the management of severe asthma

- ¹Former Head of Pneumology and Chief of the Department of Medicine and Rehabilitation, Guido Salvini Hospital-ASST Rhodense, Garbagnate Milanese, Milan, Italy
- ²Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Italy
- ³Allergy Unit, Department of Internal Medicine, University Hospital delle Marche, Ancona, Italy
- ⁴Pneumology Unit, UTIR ASST-Rhodense, Milan, Italy
- ⁵Allergy and Immunology Unit, San Giovanni di Dio Hospital, USL Toscana Centro, Florence, Italy
- ⁶Respiratory Unit, Integrated University Hospital, Verona, Italy
- ⁷Allergy Unit, Casa della Salute di Scilla, Scilla, Reggio Calabria, Italy

KEY WORDS

Severe asthma; airway hyperresponsiveness; airway epithelium; TSLP; Tezepelumab.

Corresponding author

Adriano Vaghi
Pulmonology Unit
Ospedale Guido Salvini
ASST Rhodense
viale Carlo Forlanini 95
20024 Garbagnate Milanese, Milan, Italy
ORCID: 0009-0001-1896-2852
E-mail: adriano.vaghi@aiporicerche.it

Doi

10.23822/EurAnnACI.1764-1489.376

IMPACT STATEMENT

Correct use of diagnostics and novel drugs targeting AHR will improve the treatment of severe asthma.

Summary

Airways hyperresponsiveness (AHR) is a pathognomonic event of asthma in which the airways are reactive to various bronchoconstrictor stimuli at 'doses' that normally have no bronchoconstrictor effect in non-asthmatics. AHR is an objective measure of clinical efficacy, and the introduction of biologics revived interest as a marker of disease and its pathophysiologic mechanism.

This article aims to discuss the mechanisms of AHR, focusing on the role of epithelial damage and thymic stromal lymphopoietin (TSLP) production, and promote its correct assessment for the evaluation of patients with severe asthma, to predict the risk of exacerbations and outcomes, and the eligibility for treatment with an anti-TSLP agent.

AHR is a complex trait of asthma, induced by the concurrence of many pathophysiological factors and related to different clinical manifestations. Recent evidence demonstrates the important role of airway epithelial damage and TSLP production in many of these events.

A therapeutic response based on AHR control could be considered as a condition of disease remission and seems a promising new goal for the management of patients with severe asthma.

Introduction

Airways hyperresponsiveness (AHR) is a pathognomonic event of asthma in which the airways are reactive to various bronchoconstrictor stimuli at 'doses' that normally have no bronchoconstrictor effect in non-asthmatics (1). Measurement of AHR is an objective methodology for asthma diagnosis (2) and for the assessment of response to asthma treatments. The European Medicines Agency (EMA) guideline on the clinical investigation of medicinal products for the treatment of asthma states that broncho protection (*i.e.*, the ability of a drug to provide protection against bronchial challenge) is an acceptable objective measure of clini-

cal efficacy (3). Positive response to AHR tests is usually present during asthma attacks and is a parameter related to variable expiratory flow rates, clinical symptoms of asthma, risk of exacerbations and functional respiratory decline in patients with asthma (4-7). AHR has also been proposed as a prognostic tool for the assessment of exacerbation risk (8). Moreover, AHR induced by allergens could reproduce allergic-specific asthma reactions and detect the impact of the epithelial barrier in asthma pathogenesis (9-11).

While the role of AHR testing in the diagnosis of mild to moderate asthma is widely shared, its role in severe asthma is less well understood. In-depth advancements in the therapeutics of asthma, with the introduction of biologics, revived interest in AHR as a marker of disease and its pathophysiologic mechanism. Additionally, the role of AHR in the algorithm for the definition of severe asthma clinical remission is being investigated, aiming at assessing its role as a prognostic biomarker of response to biologic treatments (12, 13), as symptoms could be a consequence of hyperreactivity (14).

Therefore, a reappraisal of evidence on AHR is necessary to understand the use and new perspectives of AHR tests in clinical practice. This article aims to discuss the mechanisms of AHR, focusing on the role of epithelial damage and TSLP production, and promote its correct assessment for the evaluation of patients with severe asthma, to predict the risk of exacerbations and outcomes, and the eligibility to treatment with an anti-TSLP agent.

Methods

This article presents the established experience of the authors in the assessment of AHR for the management of asthma, focusing on severe patients. They propose a narrative review of the literature, providing a historical and up-to-date overview of mechanisms of AHR and technical methods for assessment and supporting their interpretation of current evidence on the role of bronchial epithelium and TSLP in this context, as well as tezepelumab as a new antibody for addressing AHR in severe asthma. PubMed has been searched by cross-matching relevant keywords: "asthma", "airways hyperresponsiveness", "direct test", "indirect test", "methacholine", "histamine", "allergy", "inflammation", "remodeling", "airway epithelium", "TSLP", "tezepelumab", "diagnosis", "therapy", "prognosis", "symptom". Articles in English or with English abstracts have been considered, evaluated, and included based on the expertise of the authors and the relevance to the subject.

The pathogenesis of AHR

AHR is a common pathophysiologic event in asthma, and many mechanisms, including inflammation, airway remodeling, and hyperreactivity of bronchial smooth muscle cells, contribute dif-

ferently to its development in individuals. Heterogeneity of mechanisms, variable impact of environmental factors, aging, therapy, genetics, and epigenetic factors result in a great variability of AHR (4, 6, 15-17).

Contraction of bronchial musculature is the effector step of AHR, and the anomalous contractility of airway smooth muscle cells (ASMC) is an important component in the increased bronchoconstrictor response to stimuli in asthma. The abnormal response of ASMC may be linked to intrinsic or microenvironment changes. Pathologic changes that result in epithelial damage, bronchoconstriction, mucus secretion, bronchial wall edema, muscle hypertrophy and reversible airway obstruction (18, 19) are all strictly related to the physiopathology of AHR. Each patient could express a special phenotype of such a network, and this could be relevant to therapy (15, 20). Changes in cells playing a role in these interconnected mechanisms are also interrelated, and the network change should be understood better than single-cell type changes.

Inflammation and AHR

Epithelial-induced inflammation is one of the major contributors to the physiopathology of AHR, with subjective and environmental factors impacting its relevance (**figure 1**). The presence of AHR in subjects with asthma has commonly been correlated with the number of inflammatory cells in sputum and airway tissue (21-25), but recent evidence showed that specific epithelial-derived cytokines (*i.e.*, TSLP) are the ultimate master drivers of inflammation and AHR in asthma, as also confirmed by genomic studies (26, 27).

The presence of inflammation in airways was associated with the severity of AHR (4, 17, 28-31).

Inflammatory phenotypes: role of eosinophils

The intensity of bronchial eosinophilic inflammation was related to the response to indirect AHR tests (15, 32-39), but data are inconsistent (35, 40-45). Indeed, the main mechanism of AHR may be allergic or eosinophilic inflammation in some subjects, airway remodeling, non-T2 inflammation, or neuronal dysfunction in others. AHR is independent of the inflammatory phenotype (46) and may be considered a marker of mast cell activation through the epithelium (47).

Indeed, the severity of exercise-induced bronchoconstriction is not correlated with the concentration of eosinophils in induced sputum, and direct AHR persists after depletion of sputum eosinophilia obtained through IL-5 blockage (48-54). Contractility is increased by neurokinins released from nerve terminals in patients with exercise-induced bronchoconstriction (44, 50). Additionally, Al-Shaikhly *et al.* (41) could not find a significant correlation between sub-epithelial or epithelial eosinophils and direct AHR, while intraepithelial eosinophil density correlated with severity of exercise-induced bronchoconstriction. These data showed that intraepithelial eosinophils are only a specific feature of asthma

and are related to the severity of indirect AHR and T2 inflammation, in contrast with previous studies showing a correlation of indirect AHR with eosinophils under the mucosa (55). Intraepithelial eosinophils may be easily stimulated by external factors, explaining the reactivity of patients with asthma (56-58). Differently expressed genes in the epithelium of patients with only direct AHR and in patients with indirect AHR were found, correlating with the density of mast cells and eosinophils in the epithelium (26).

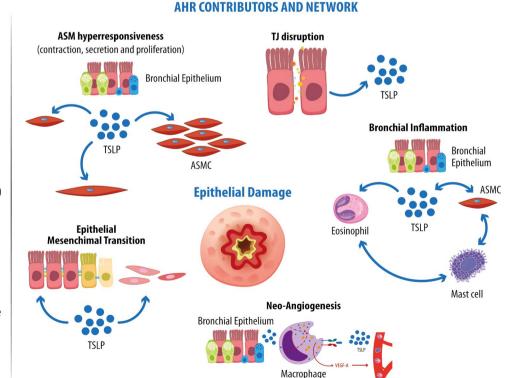
Mast cells

In the airways, mast cells with high expression of chymase and tryptase (MC-tc) are prevalent in the submucosa (prevalent in healthy subjects), and those with high expression of tryptase (MC-t) mainly infiltrate the mucosa (prevalent in asthma) (40). Indeed, the number of intraepithelial MCs is correlated with the presence of indirect AHR and the presence of type 2 inflam-

mation (40, 59, 60). MCs in patients with asthma have signs of degranulation and activation, suggesting an increased turn-over. Additionally, MC-derived mediators are increased in bronchoalveolar lavage (BAL) from patients with asthma (61-64). The relation of the epithelium with the MCs is a pivotal factor for the development of indirect AHR, as found in exercise-induced asthma (65-68).

The epithelial-MC cross talk is involved in AHR both with type 2 and non-type 2 inflammation, suggesting that this could be a therapeutic target across all asthma phenotypes (42). Moreover, MCs and eosinophils ("allergic effector unit") activate each other, contributing to the development and persistence of inflammation and AHR (69-72). Nevertheless, active MCs may contribute to AHR also independently of eosinophils (73, 74). MCs infiltrate within the airway musculature was observed in patients with asthma, indirect AHR and a non-type 2 inflammatory phenotype (42).

Figure 1 - The pivotal role of epithelial damage in mechanisms contributing to the development of airway hyperresponsiveness.


The new vision of AHR

AHR SYMPTOMS MARKERS

- Chest tightness with pets, dust or feathers
- Cough
- Dyspnea
- · Wheezing to irritants

AHR CLINICAL SIGNS

- Bronchoconstrictive response to inhaled triggers (Allergens, Viruses, Pollutants...)
- Bronchoconstrictive response to challenge (Allegens/Metacoline/Mannitol Osmotic stimuli/Sport Physical stress)
- Variable lung functions
 Δ FEV
 Λ PFF
- Symptoms with Limited response to bronchodilators and ICS

MCs may be activated by neurotransmitters and neuropeptides and have a role in neurogenic inflammation, and indirect AHR (75-77). Also, neuropeptides from MCs promote the innervation of the muscular layer, increasing contractility and responsivity (78, 79).

Arachidonic acid derivatives

The epithelium exerts its regulating activity of the airway tonus also by modulating cytokines and arachidonic acid derivatives production. It produces arachidonic acid metabolites with bronchoprotective and broncho-dilating activity; the alarmins TSLP and IL-33 may increase the production of the bronchoconstrictors PGD2 and cysLT by inflammatory cells (59). The airway epithelium modulates the production of inflammatory eicosanoids by MCs and eosinophils (60, 50, 80, 81) highlighting its considerable potential as a target through its cytokines to modulate AHR. In conclusion, current evidence shows that TSLP is involved in many inflammatory mechanisms with pathophysiological relevance in asthma and may be an important therapeutic target in intercepting and modulating such mechanisms.

Epithelial damage, remodeling, and AHR

Structural changes in large and small airways are typical of asthma and include disruption of the epithelial layer, increased osmolarity of periciliary fluid, hyperplasia, metaplasia of goblet cells and submucous glands, thickening of the basement membrane (subepithelial fibrosis), increased bronchial smooth muscle cell number, angiogenesis, and lost relationship between small airways and lung parenchyma. All these events are strictly related to AHR and need to be considered when evaluating the response to bronchoconstriction direct and indirect stimuli (figure 1).

Epithelium

Aeroallergens or microbial pathogens induce epithelial cells to secrete interleukins (IL), alarmins (IL-25, IL33, and TSLP), and chemotactic factors (CXCL8, CCL5, CCL17, and CCL20), cooperating in the initiation of innate or acquired immune responses (11, 20, 82-86) and inflammation (20, 87-89). These reactions contribute to the disruption of the epithelial barrier and promote further factor release while inhibiting the production of antimicrobial peptides (20, 90-94). The increased permeability of the damaged epithelium allows changes in osmolarity and the entrance of pathogens and irritants that may reach nerve terminals and inflammatory cells. Concurrently, epithelial-derived cytokines directly activate inflammatory cells of the innate and acquired immune system and ASMC. Once activated, immune cells synthesize secondary mediators like IL-5, IL-13, and IL-4, resulting in inflammation amplification (20, 59, 84).

Osmolarity

The airway epithelium regulates the electrolytic balance, volume and osmolarity of the periciliary fluid. High changes in osmolarity induce cell damage and may be a bronchoconstrictor trigger in patients with asthma (95). The epithelial regulation of osmolarity is the main target of indirect stimuli of AHR, such as exercise, hypertonic and hypotonic solutions (4, 95-99). Indeed, the response to stimuli that directly increase the periciliary fluid osmolarity, such as hyperosmotic solutions, and those that act indirectly, such as hyperventilation, are strictly related to AHR (100-102). Epithelial cells under osmotic stress produce alarmins (59), suggesting that mechanical and osmotic stress of the airway epithelium is related to the development of AHR. This mechanism may explain the asthma and exercise-induced bronchoconstriction in athletes practicing winter sports who have extreme hyperventilation in cold and dry air (103). So, the epithelium results easily damaged, with desquamation and layer breaks, inducing cytokine releasing (29, 48, 50, 103-105). Chronic epithelial damage with increased permeability and reduced bronchoprotective molecules may promote exercise-induced asthma in athletes and subjects with asthma (29, 106-108). Asthma of elite athletes is a clinical model showing that epithelial injury, production of inflammatory mediators, and epithelial cytokines are important factors in the development of AHR in subjects with asthma.

Mucus

The main changes in the epithelium of patients with asthma (thickened basement membrane, loss of cilia and junctions, anomalous mucus with overexpression of MUC5AC and MUC2) (20, 82-85, 90, 109) have been associated to AHR and tissue remodeling (90, 110-117).

Neo-angiogenesis

Neo-angiogenesis is a fundamental player of airway remodeling and is correlated to limited airflow, AHR, and asthma severity (118-122). Human endothelial cells express TSLP receptors and TSLP induces their proliferation and vascular endothelial growth factor A (VEGF-A) release from human lung macrophages (123).

Smooth muscle cells

Additionally, the abnormal bronchoconstriction response to stimuli could be due to increased velocity of ASM shortening in asthmatic AHR and increased constriction (124, 125). Epithelial injury is associated with increased ASMC proliferation mediated by IL-6, IL-8, MCP-1, and MMP-9 (126) and by growth factors (TGF-β, PDGF, FGFs, and VEGF) (127). Additionally, damaged epithelial cells release soluble mediators and Ca+ ions activating ASMC (128), induce muscular hypertrophy and increase ASMC migration (129-131). These data suggest that asthma may develop independently of inflammation through the reinforcing effects of bronchoconstriction and epithelial injury on each other (52).

Epithelial-mesenchymal transition

Stressing stimuli induce epithelial-mesenchymal transition in primary airway epithelial cells from patients with asthma by pro-

duction of transforming growth factor-beta1 (132). This factor promotes the production of extracellular matrix by fibroblasts, expressing the receptor for TSLP, and the change in the extracellular matrix induces ASMC proliferation (133). Besides this indirect stimulation, also ASMC express the receptor for TSLP (TSLPR) (134, 135) and are directly stimulated by TSLP through transcription factors (MAP kinases ERK1/2, p38 and JNK), increasing their contractility (134, 136).

Mast cells

MCs are activated by TSLP, and produce CysLTs and PGD2 inducing ASMC migration and non-type 2 cytokines, including TNF- α and IL-1 β that may activate ASMCs, and thus induce AHR by a non-type 2 mechanism (137, 138).

Indirect AHR is correlated to MC density in the airway epithelium in subjects with type 2 inflammation, while it is correlated with MC infiltration of bronchial muscularis in subjects with non-type 2 inflammation. Reduction of indirect AHR following therapy was associated with reduction of the MC infiltrate in the epithelium (subjects with type 2 inflammation) and the muscularis (subjects with non-type 2 inflammation) (42).

Clinical impact of airway changes

Clinical signs of asthma are the result of epithelial dysfunction, inflammation, large and small airway remodeling, and increased contractile response of ASMCs (139, 140). The reversible component of AHR is conventionally attributed to inflammatory mechanisms, and the non-reversible one to the remodeling of airways (17, 35, 141). Airways remodeling, assessed as the thickness of the bronchus wall, is associated with progressively impaired FEV₁ (142), asthma severity (143), irreversible obstruction and air trapping (142, 144, 145). An increased response to direct AHR stimuli in patients with non-reversible asthma may be due to an altered shape of airways, resulting in a reduced FEV₁ independent of the smooth muscle reactivity level (145-147). Boulet *et al.* also demonstrated that remodeling, assessed as intermediate bronchus wall thickness, is correlated with direct AHR in patients with asthma and irreversible obstruction (148).

Different pathways of remodeling may thus act differently on AHR, with effects varying from increased intrinsic responsiveness of ASMC to a geometric structural change of airways. Current evidence suggests that a great amount of remodeling is correlated with a greater ventilatory disparity, air trapping, airway closure and small airway dysfunction, which may together contribute to the development of AHR (141, 144, 145, 149-151).

Ventilation heterogeneity is correlated with AHR independently of airway inflammation and with clinical features of asthma (35, 152). ASMC remodeling as well as bronchial obstruction, are critical only in some areas of airways (149, 153, 154). With uniform, smooth muscle contraction, minimal heterogeneity of airway caliber may lead to clusters of poorly ventilated lung units and, at

critical muscle contraction, induce sudden airway obstruction (155). Heterogeneous remodeling and areas of poor ventilation are stable, and the thickening of muscularis is a patchy defect, not involving the whole airways (156, 157).

Although the mean difference in bronchial wall thickness is not different in asthmatic and healthy subjects, patients with asthma have thickened airways in some areas only, especially in near-fatal asthma (154). Thus, measuring mean thickness or a single section thickness of airways may not be a reliable assessment of airway remodeling. The hypertrophy of some areas may induce dramatic obstruction, although other areas have only a low level of remodeling (155, 158, 159). The heterogeneity of ventilation is mainly due to remodeling, inflammation, and ASMC responsiveness but is also increased by exudate, mucus abnormality and reduced surfactant (86). Indeed, mucus plugs were observed in at least four lung segments, in 67% of subjects with asthma showing FEV₁ < 60% of theoretical value (160), and 82% of subjects with asthma have mucus plugs persisting for at least 3 years, usually in the same segment of airways (161). Mucus plugs are more evident during exacerbations with obstruction of at least 40% of airways (162) and are associated with regional ventilation defects (163). In conclusion, all these observations confirm that AHR is the result of many mechanisms, which may have different relevance in individuals, resulting in clinical types with possible different therapeutical needs.

Challenge tests for AHR assessment

As described below, AHR in asthma comprises both variable and fixed components, each contributing to the overall sensitivity and reactivity of the airways. Understanding these components is crucial for characterizing the dynamic nature of AHR in individuals with asthma.

The variable component of AHR refers to the reversible and transient narrowing of the airways in response to various stimuli. This component is characterized by acute bronchoconstriction that can be triggered by factors, such as allergens, exercise, cold air, or respiratory infections. The degree of variability in airway narrowing is typically assessed through bronchoprovocation tests, such as the methacholine challenge or exercise challenge tests (164, 165).

The variable component reflects the dynamic nature of asthma symptoms, where individuals may experience fluctuations in airflow obstruction in response to different environmental or physiological triggers. Pharmacological interventions, such as bronchodilators (*e.g.*, short-acting beta-agonists), are often effective in rapidly reversing this component, providing relief from acute bronchoconstriction, and improving lung functions (166).

In contrast, the fixed component of AHR refers to persistent and irreversible structural changes in the airways, leading to increased baseline airway resistance. This component is associated with air-

way remodeling, epithelial damage, and alterations in the extracellular matrix (165). Unlike the variable component, the fixed component is less responsive to bronchodilator therapy and is indicative of long-term changes in the architecture of the airways. These structural alterations contribute to a heightened baseline airway resistance, even in the absence of acute triggers. The fixed component is considered a more permanent aspect of AHR, reflecting the chronic and progressive nature of asthma in some individuals (166). Understanding the interplay between the variable and fixed components of AHR is crucial for tailoring asthma management strategies. While bronchodilators effectively target the variable component, addressing the fixed component may require anti-inflammatory therapies aimed at modifying the underlying inflammatory and remodeling processes. This comprehensive approach is essential for achieving optimal asthma control and improving longterm outcomes for individuals with asthma.

Assessment of bronchial hyperresponsiveness is commonly utilized in both clinical practice as well as in research settings and provides clinicians with objective measures to assess bronchial hyperresponsiveness and guide treatment decisions in asthma management. Regular monitoring of bronchial hyperresponsiveness is crucial for optimizing asthma treatment and adjusting therapeutic strategies based on individual patient responses. The choice of specific tests depends on factors such as patient age, clinical presentation, and the availability of testing facilities. Moreover, not all tests are indicated in severe forms of asthma, especially in case of uncontrolled disease, with difficulties in assessing AHR presence or grading in a specific patient.

Direct and indirect challenge tests

AHR may be assessed by direct and indirect challenge tests based on the type of stimulus and based on reflective components that one would like to evaluate (6, 167).

Direct bronchoprovocation challenges (*e.g.*, methacholine) act directly on specific airway smooth muscle receptors, M3 or H1 (6) and are more sensitive and less specific than indirect challenges. In subjects with clinically current symptoms (within a few days) who inhale methacholine without deep inhalations, a normal methacholine test (provocative concentration causing a 20% fall in FEV₁ [PC20] >16 mg/mL) rules out asthma with reasonable certainty. Arbitrary cut points have been set for predictive values. A positive test in the moderate or greater range (PC20 < 1 mg/mL) has high specificity and positive predictive value, comparable to the indirect challenges (6).

Indirect challenges, by physical or pharmacological stimulus, cause the release of endogenous bronchoconstrictor mediators from epithelial cells, mastocytes, and eosinophils and stimulate nerve terminals (4, 167). The indirect challenges commonly used in pulmonary function laboratories include exercise voluntary hyperpnea, hypertonic (4.5%) saline, and mannitol (167). All these indirect challenges are associated with the release of

mast cell mediators (*e.g.*, prostaglandins, leukotrienes, and histamine). Although hyperresponsiveness to indirect challenges is frequently associated with sputum eosinophilia, it is not a prerequisite because the mast cell is the most important source of mediators (167). Airway sensitivity to indirect challenges is reduced or even totally inhibited by treatment with inhaled corticosteroids (ICS), so a positive response to an indirect stimulus is believed to reflect active airway inflammation. Indirect challenges are appropriate to inform further on both the pathogenesis of asthma and the role of anti-inflammatory agents in its treatment (167).

Direct challenge tests use standardized protocols based on the administration of growing concentrations of the agonist using a breath-actuated or continuous nebulizer or by deep inhalation in the dosimetric method (6, 168). The methacoline test is considered positive when the provocative concentration (PC20) and the provocative dose (PD20) result in 20% decrease in Forced Expiratory Volume in the first second (FEV₁) (164, 168, 169-174).

Other functional tests

AHR may also be assessed by other functional tests, for example, by lability in peak asthma flow (PEF), which some studies have correlated with direct and indirect AHR (175). The most useful index of PEF lability in the management of asthma (stable although either controlled or uncontrolled) was found to be the minimum morning prebronchodilator PEF over a week (expressed as percent recent best or percent predicted) because it strongly correlates with AHR (176). In this context, PEF variability could be used as an index of disease activity.

Symptoms correlated to AHR

Several authors found a positive correlation between airway responsiveness and some of the symptoms investigated by questions from the standardized asthma questionnaire (177-183). Symptoms like wheezing, shortness of breath, cough and history of dyspnea episodes were significantly correlated with methacholine responsiveness. These symptoms can vary in severity and frequency from person to person and can be triggered by various factors such as allergens, exercise, cold air, or respiratory infections. Since some symptoms may be considered surrogate clinical markers of AHR, is it possible to speculate that this can be useful tools to recognize AHR in patients with severe asthma, when testing with direct or indirect challenges is not suitable?

Potential surrogate markers of AHR useful to monitor during normal clinical practice are listed in **table I**.

Indirect AHR challenges may be represented by scalable chemical stimuli (*i.e.*, mannitol, hypertonic or hypotonic solutions, adenosine) or single bouts of high-intensity hyperventilation (*i.e.*, high-intensity physical activity, eucapnic voluntary hyperventilation (EVH) (44, 59, 184-188). The indirect tests are considered positive when FEV₁ is reduced by 15% *vs* baseline in the stress testing and by 10% in the EVH test (189).

Interpretation and indications of tests for AHR

The main indication of direct AHR tests is confirmation of asthma diagnosis in subjects with normal spirometry (18, 190, 191). No gold standard is available for the diagnosis of asthma; therefore, diagnosis is based on clinical data (mainly the probability of asthma pre-test) and function tests demonstrating a variable respiratory function. Among these tests, the AHR assessment has the best diagnostic performance. However, this performance is dependent on the pre-test probability and cut-off used to define positivity (6, 168, 190-192). The direct AHR test with methacho-

line, if the whole range of positivity is considered (*i.e.*, a PC20 between 0.0625 and 8 or 16 mg/ml methacholine, corresponding to 0.1425 to 190 or 380 μg methacholine), has high sensibility and positive predictive value (PPV) but has a low specificity. False positivity is not rare, as in subjects with asymptomatic hyperreactivity or subjects with atypical symptoms and low pretest probability, while negativity is a reliable result and may rule out current asthma in symptomatic subjects (6, 7, 174, 192, 193). A moderate-high AHR response (PC20 < 1m/ml methacholine, corresponding to PD20 < 23.75 μg methacholine) is highly spe-

Table I - Surrogate markers of airway hyperresponsiveness.

Test type	Bronchial hyper-reactivity and associated symptoms	Reference
	Di	rect tests
Methacholine challenge test	 Wheeze, Wheeze with dyspnea, Cough History of chronic bronchitis, pneumonia, and acute bronchitis 	Dales RE, Ernst P, Hanley JA, Battista RN, Becklake MR. Prediction of airway reactivity from responses to a standardized respiratory symptom questionnaire. Am Rev Respir Dis. 1987;135(4):817-21. doi: 10.1164/arrd.1987.135.4.817.
	Wheezy chest Attacks of shortness of breath with wheezing Dry cough at night	Remes ST, Pekkanen J, Remes K, Salonen RO, Korppi M. In search of childhood asthma: questionnaire, tests of bronchial hyperresponsiveness, and clinical evaluation. Thorax. 2002;57(2):120-6. doi: 10.1136/thorax.57.2.120.
	 Wheezing, Shortness of breath Cough History of episodes of dyspnea and wheeze 	Yurdakul AS, Dursun B, Canbakan S, Cakaloğlu A, Capan N. The assessment of validity of different asthma diagnostic tools in adults. J Asthma. 2005;42(10):843-6. doi: 10.1080/02770900500370981.
	CoughCough from chestShortness of breathChest tightness	Shin B, Cole SL, Park SJ, Ledford DK, Lockey RF. A new symptom-based questionnaire for predicting the presence of asthma. J Investig Allergol Clin Immunol. 2010;20(1):27-34.
Histamine challenge test	 Shortness of breath or wheezing, or both to irritants like cold air, smoky atmospheres, traffic fumes, and common household chemicals (hair sprays, perfumes, bleach, etc.) Bronchial irritability Nocturnal dyspnea Morning tightness 	Mortagy AK, Howell JB, Waters WE. Respiratory symptoms and bronchial reactivity: identification of a syndrome and its relation to asthma. Br Med J (Clin Res Ed). 1986;293(6546):525-9. doi: 10.1136/bmj.293.6546.525
	Wheeze Shortness of breath Tightness in the chest on coming into contact with animals, dust or feathers	Burney PG, Chinn S, Britton JR, Tattersfield AE, Papacosta AO. What symptoms predict the bronchial response to histamine? Evaluation in a community survey of the bronchial symptoms questionnaire (1984) of the International Union Against Tuberculosis and Lung Disease. Int J Epidemiol. 1989;18(1):165-73. doi: 10.1093/ije/18.1.165.
	Ind	irect tests
Inhaled procaterol	Wheeze Breathlessness Chest tightness Cough ⁷	Tomita K, Sano H, Chiba Y, Sato R, Sano A, Nishiyama O, et al. A scoring algorithm for predicting the presence of adult asthma: a prospective derivation study. Prim Care Respir J. 2013;22(1):51-8. doi: 10.4104/pcrj.2013.00005.

cific. It has a high PPV but has little sensibility and may result in many false negative responses.

Its performance is like that of indirect tests, and a positive test may be used to confirm the diagnosis of asthma (6, 174). As a result, the higher the pre-test probability, *i.e.*, if reported symptoms are recent and characteristic of asthma, and the lower the PC20 and PD20, the higher the probability that a positive methacholine test is associated with asthma (6, 168,174).

In conclusion, the indirect tests have higher specificity and lower sensibility for asthma diagnosis than direct tests and do not detect subjects with mild or borderline AHR, which the methacholine test can show (6, 100, 194-196). Several studies confirmed the low sensibility and high specificity of indirect tests, which are indicated to confirm a diagnosis of asthma more than to rule it out (33, 197-200). Another clinically relevant characteristic of indirect tests is their correlation with eosinophilia of airways, measured as number of eosinophils in the sputum and by expired NO (31, 33), and with mastocyte infiltrate in airways (201). The response to hypertonic or hypotonic stimuli is associated with exercise-induced bronchoconstriction (202, 203) and responses to hyperpnea (100), while test with mannitol is less sensible for exercise - related asthma (101). It results that indirect tests are rarely positive if direct tests are not, but they can also be negative in the presence of a positive AHR with methacholine test, confirming that asthma may not always be associated with inflammation (33, 185, 198).

AHR and biologic treatments: focus on tezepelumab

Treatment strategies targeting the abnormal responsiveness to bronchoconstrictors featuring direct and indirect AHR attained good outcomes in patients with mild-moderate asthma, including reducing the risk of exacerbations and remodeling of airways. Inhaled corticosteroids (ICS), with or without long-acting beta-agonists (LABA), with the possible addition of long-acting muscarinic antagonists (LAMAs), have been the cornerstone of asthma management for decades (204). Nevertheless, not all patients are controlled due to the heterogeneity of the disease, and patients with severe asthma still have unsatisfactory outcomes (5, 205). Recently, many biological therapies have been licensed for severe asthma, demonstrating positive clinical effects on exacerbations, symptom control and lung functions. They have different mechanisms of action and target components mainly belonging to inflammatory pathways response of the airways (206). Many studies confirmed the positive effect on inflammation or on common clinical parameters of these therapeutic options, but little evidence is available on the potential effect on the second hallmark of asthma, AHR. The latter is particularly important in the field of severe asthma since this resistant form of the disease does not respond in terms of protection to bronchoconstriction stimuli. Effect of omalizumab (anti-IgE mAb) on AHR was assessed in 9 studies (207-215) but only in three studies the drug showed slight reduction in AHR to challenges as methacholine, acetylcholine, and AMP (207, 209, 215), and mainly in moderate allergic asthmatics (nevertheless studies were not consistent for dose, route of administration, asthma severity and type of test). No studies assessed omalizumab's effect on mannitol testing.

Only three pieces of evidence are available on mepolizumab, but without any effect on AHR displayed by the IL-5 antibody (51, 216, 217).

On the contrary, Chan *et al.* showed that benralizumab-induced eosinophil depletion is associated with attenuated mannitol AHR in severe uncontrolled eosinophilic asthma (24).

To date, there are no published *in vivo* studies relating to dupilumab and AHR.

More convincing evidence is derived from tezepelumab, the anti-TSLP monoclonal antibody. Three different studies showed that TSLP inhibition induced by tezepelumab reduced AHR to methacholine and to mannitol (47, 218, 219). In addition, it was shown that tezepelumab reduced both early and late allergic responses (218-220). In a mouse model of respiratory allergy to house dust mites, resulting in AHR to methacholine, the administration of tezepelumab inhibited inflammation, preventing the overexpression of IL-4, IL-13, TSLP, and TGF- β 1. Control of airway inflammation was associated with inhibition of structural remodeling and reduced AHR to methacholine (221).

The first double-blind, randomized clinical trial with tezepelumab, was conducted in 31 patients with mild allergic asthma (218). It demonstrated that treatment was effective on early and late allergic responses, reduced AHR to methacholine, allergen-induced bronchoconstriction, FEV $_1$ decline, and eosinophil count in blood and sputum. The PC20 to methacholine challenge was significantly increased on day 83, compared to the group receiving placebo (p = 0.004).

The multicenter, exploratory, double-blind, randomized, placebo-controlled, phase 2 CASCADE study assessed the effect of tezepelumab on airway inflammatory cells, airway remodeling, and AHR in adult patients with moderate to severe uncontrolled asthma (219). Overall, 116 patients receiving inhaled corticosteroids were randomized either to tezepelumab 210 mg or placebo, subcutaneously every 4 weeks. Patients in the tezepelumab group had a significantly greater reduction in AHR to mannitol versus placebo (p = 0.030). A larger proportion of patients in the tezepelumab group had a negative AHR to mannitol at the end of treatment (13/30, 43% vs 7/28, 25% in the placebo group). UPSTREAM was a double-blind, placebo-controlled, randomized trial designed to evaluate whether tezepelumab decreases AHR and airway inflammation in patients with symptomatic asthma resistant to inhaled corticosteroids (220). It enrolled adult patients with asthma and AHR to mannitol, who received either 700 mg tezepelumab or placebo intravenously every 4 weeks. At week 12, AHR to mannitol was more reduced by tezepelumab than by placebo (mean reduction of PD15 was 1.9, 95%CI 1.2-2.5 versus 1.0, 95%CI 0.3-1.6, in the placebo group). The test was negative in 9 (45%) tezepelumab and 3 (16%) placebo patients (p = 0.04). This improvement was especially evident in patients with eosinophilic asthma. Eosinophils in airway tissue and BAL decreased by 74% (95%CI -53 to -86%) and 75% (95%CI -53 to -86%), respectively, with tezepelumab, while they increased by 28% (95%CI -39 to 270%) and decreased only by 7% (95%CI -49 to 72%), respectively, with placebo (p = 0.004 and p = 0.01). The total mast cells in airway mucosal biopsies decreased by 25% (95%CI -47 to 6%) in the treated group and increased by 18% (95%CI -18 to 69%) in the placebo group (p = 0.07). These results demonstrated that tezepelumab efficacy in patients with asthma may be obtained both with type 2 inflammation and non-type 2 inflammation (220). In this trial, tezepelumab improved allergen induced broncocontriction, in contrast with results obtained with anti-IL-5 biologics (24, 51, 216, 217). This data supports the hypothesis that inhibition of TSLP-related mast cell activation contributes to attenuation of AHR by tezepelumab. Treatment of this smooth muscle cell component of asthma would be the mechanism of tezepelumab benefit on non-type 2 asthma. A larger effect size might have been observed if the study had recruited only patients with severe AHR (PD15 < 35 mg) to mannitol. These data suggest that the primary mechanism by which tezepelumab improves asthma clinical and physiological outcomes is suppression of airway eosinophilia.

In a prespecified exploratory analysis of the Phase III NAVIGA-TOR trial, tezepelumab resulted in early and sustained improvements in morning and evening PEF compared with placebo, with effects observed at the first week of administration and continued over the 52-week observation. Clinically meaningful improvements from baseline in morning and evening PEF were observed with tezepelumab as early as week 2 (222).

The clinical results obtained with tezepelumab confirm the relevance of preclinical data demonstrating the pivotal role of epithelial damage and TSLP in the pathophysiology of inflammation and airway remodeling associated with AHR. Indeed, TSLP is central in the development of inflammation in response to epithelial damage, resulting in eosinophilia activation of MCs and AHR. Additionally, TSLP is involved in airway remodeling and AHR through increased epithelium permeability, osmolarity changes, loss of ciliary function, mucus hypersecretion, angiogenesis, and direct activation of ASMC by damaged epithelial cells. Tezepelumab acts on several components of AHR, including closure that is often found in patients with severe asthma (15). This activity could be mainly linked to an improvement of baseline ventilation heterogeneity (155), and contributes to reducing airways remodeling, and to prevention of airways closure (15, 141). It must be remembered that the tezepelumab trials (219, 223) enrolled patients with asthma not controlled by medium- or high-dose ICS but with a relevant AHR to mannitol challenge. Inflammation and development of AHR were not inhibited by ICS in these subjects, showing the presence of mechanisms inducing resistance to corticosteroids, possibly correlated to TSLP production, as this factor reduces the response to steroids (224), and indeed, AHR was blocked by tezepelumab in most of these patients. These data show that tezepelumab acts on top of ICS both in T2-type and non-T2-type asthma and opens new therapeutic perspectives. The definition of the non-reversible or non-modifiable component of asthma considered when only high-dose ICS were available must be reappraised; the new tool acting on AHR, the unifying mechanism of all asthma manifestations, provides new options to obtain severe asthma remission. In conclusion, current evidence from preclinical and clinical studies suggests that inhibition of type 2 inflammation only is unsatisfactory for AHR, as modulation of this pathway alone does not necessarily induce broncho reactivity. Inhibition of epithelial pathways and cross-relationship of TSLP involving structural cells, inflammatory cells, mast cells, and remodeling mediators may be cardinal, as demonstrated by targeting the epithelial-derived cytokine TSLP. This opens a new perspective in the clinical consideration of new monoclonal antibodies like tezepelumab.

Conclusions

AHR is a complex trait of asthma, induced by the concurrence of many pathophysiological factors and related to different clinical manifestations. This review of the literature shows that the phenomenon has been investigated for many years, unveiling many contributors and inter-relationships of inflammatory and remodeling processes through immune and structural cells. Recent evidence demonstrates the important role of airway epithelial damage and TSLP production in many of these events.

Nowadays, the assessment of AHR in clinical practice may improve knowledge and therapeutic perspectives for severe asthma. Such assessment is based on conventional challenge tests, but the identification of AHR through morning pre-bronchodilator PEF or suggestive symptoms as surrogate markers of AHR could be an innovative, convenient and patient-oriented approach.

A therapeutic response based on AHR control could be considered as a condition of disease remission and seems a promising new goal for the management of patients with severe asthma. In this perspective, the recently approved biologic agent for severe asthma acting on TSLP is introducing a new way of managing severe asthma beyond inhibiting inflammation and preventing exacerbations.

Fundings

None.

Contributions

All authors: conceptualization. AV: literature analysis and revision, writing - original draft, writing - review & editing.

Conflict of interests

The authors declare that they have no conflict of interests.

Acknowledgements

The authors thank Laura Brogelli (Polistudium, Milan, Italy) for her support with the translation.

References

- Fahy JV. Type 2 inflammation in asthma–present in most, absent in many. Nat Rev Immunol. 2015;15(1):57-65. doi: 10.1038/NRI3786
- 2. Sverrild A, Leadbetter J, Porsbjerg C. The use of the mannitol test as an outcome measure in asthma intervention studies: a review and practical recommendations. Respir Res. 2021;22(1):287. doi: 10.1186/s12931-021-01876-9.
- 3. European Medicines Agency. Guideline on the clinical investigation of medicinal products for the treatment of asthma (CHMP/EWP/2922/01 Rev.1). 2015. Available at: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-clinical-investigation-medicinal-products-treatment-asthma_en.pdf.
- Brannan JD, Lougheed MD. Airway hyperresponsiveness in asthma: mechanisms, clinical significance, and treatment. Front Physiol. 2012;3:460. doi: 10.3389/fphys.2012.00460.
- Sont JK, Willems LN, Bel EH, van Krieken JH, Vandenbroucke JP, Sterk PJ. Clinical control and histopathologic outcome of asthma when using airway hyperresponsiveness as an additional guide to long-term treatment. The AMPUL Study Group. Am J Respir Crit Care Med. 1999;159 (4):1043–1051. doi:10.1164/ ajrccm.159.4.9806052.
- Cockcroft DW. Direct challenge tests: Airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest. 2010;138(2 Suppl):18S-24S. doi: 10.1378/chest.10-0088.
- Brutsche MH, Downs SH, Schindler C, Gerbase MW, Schwartz J, Frey M, et al; SAPALDIA Team. Bronchial hyperresponsiveness and the development of asthma and COPD in asymptomatic individuals: SAPALDIA cohort study. Thorax. 2006;61(8):671-7. doi: 10.1136/thx.2005.052241.
- 8. Liu L, Zhang X, Liu Y, Zhang L, Zheng J, Wang J, et al. Chitinase-like protein YKL-40 correlates with inflammatory phenotypes, anti-asthma responsiveness and future exacerbations. Respir Res. 2019;20:95. doi: 10.1186/s12931-019-1051-9.
- Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021;21:739–51. doi: 10.1038/s41577-021-00538-7.
- Frey A, Lunding LP, Ehlers JC, Weckmann M, Zissler UM, Wegmann M. More than just a barrier: the immune functions of the airway epithelium in asthma pathogenesis. Front Immunol 2020;11:761. doi: 10.3389/fimmu.2020.00761.
- Calvén J, Ax E, Rådinger M. The Airway Epithelium-A Central Player in Asthma Pathogenesis. Int J Mol Sci. 2020;21(23):8907. doi: 10.3390/ijms21238907.
- Papaioannou AI, Fouka E, Bartziokas K, Kallieri M, Vontetsianos A, Porpodis K, et al. Defining response to therapy with biologics in severe asthma: from global evaluation to super response and remission. Expert Rev Respir Med. 2023;17(6):481-93. doi: 10.1080/17476348.2023.2226392.

- Mihatov Štefanović I, Vrsalović R. Based on what parameters is safe to discontinuate inhaled corticosteroids in children with asthma? J Asthma. 2023;60(12):2121-9. doi: 10.1080/02770903.2023.2220795.
- 14. Hallas HW, Chawes BL, Rasmussen MA, Arianto L, Stokholm J, Bønnelykke K, et al. Airway obstruction and bronchial reactivity from age 1 month until 13 years in children with asthma: A prospective birth cohort study. PLoS Med. 2019;16(1):e1002722. doi: 10.1371/journal.pmed.1002722.
- Chapman DG, İrvin CG. Mechanisms of airway hyper-responsiveness in asthma: the past, present and yet to come. Clin Exp Allergy. 2015;45(4):706-19. doi: 10.1111/cea.12506.
- Nair P, Martin JG, Cockcroft DC, Dolovich M, Lemiere C, Boulet LP, et al. Airway Hyperresponsiveness in Asthma: Measurement and Clinical Relevance. J Allergy Clin Immunol Pract. 2017;5(3):649-59.e2. doi: 10.1016/j.jaip.2016.11.030.
- 17. Cockcroft DW, Davis BE. Mechanisms of airway hyperresponsiveness. J Allergy Clin Immunol. 2006;118(3):551-9; quiz 560-1. doi: 10.1016/j.jaci.2006.07.012.
- Global Initiative for Asthma. Global strategy for asthma management and prevention. 2023. Available at: https://ginasthma.org/wp-content/uploads/2023/07/GINA-2023-Full-report-23_07_06-WMS.pdf.
- NAPPCC 2020: Expert Panel Working Group of the National Heart, Lung, and Blood Institute (NHLBI) administered and coordinated National Asthma Education and Prevention Program Coordinating Committee (NAEPPCC); Cloutier MM, Baptist AP, Blake KV, Brooks EG, Bryant-Stephens T, DiMango E, et al. 2020 Focused Updates to the Asthma Management Guidelines: A Report from the National Asthma Education and Prevention Program Coordinating Committee Expert Panel Working Group. J Allergy Clin Immunol. 2020;146(6):1217-70. doi: 10.1016/j.jaci.2020.10.003.
- Cecchi L, Vaghi A, Bini F, Martini M, Musarra A, Bilò MB. From triggers to asthma: a narrative review on epithelium dysfunction. Eur Ann Allergy Clin Immunol. 2022;54(6):247-57. doi: 10.23822/ EurAnnACI.1764-1489.271.
- 21. Kirby JG, Hargreave FE, Gleich GJ, O'Byrne PM. Bronchoalveolar cell profiles of asthmatic and nonasthmatic subjects. Am Rev Respir Dis. 1987;136(2):379-83. doi: 10.1164/ajrccm/136.2.379.
- 22. Porsbjerg CM, Gibson PG, Pretto JJ, Salome CM, Brown NJ, Berend N, et al. Relationship between airway pathophysiology and airway inflammation in older asthmatics. Respirology. 2013;18(7):1128-34. doi: 10.1111/resp.12142.
- 23. Brightling CE, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, Pavord ID. Mast-cell infiltration of airway smooth muscle in asthma. N Engl J Med. 2002;346:1699-705. doi: 10.1016/j.rmed.2007.01.004.
- 24. Chan R, RuiWen Kuo C, Jabbal S, Lipworth BJ. Eosinophil depletion with benralizumab is associated with attenuated mannitol airway hyperresponsiveness in severe uncontrolled eosinophilic asthma. J Allergy Clin Immunol. 2023;151(3):700-5.e10. doi: 10.1016/j. jaci.2022.10.028.
- 25. Porsbjerg C, Sverrild A, Backer V. The usefulness of the mannitol challenge test for asthma. Expert Rev Respir Med. 2013;7:655-63. doi: 10.1586/17476348.2013.847370.
- Murphy RC, Lai Y, Liu M, Al-Shaikhly T, Altman MC, Altemeier WA, et al. Distinct Epithelial-Innate Immune Cell Transcriptional Circuits Underlie Airway Hyperresponsiveness in Asthma. Am J Respir Crit Care Med. 2023;207(12):1565-75. doi: 10.1164/rccm.202209-1707OC.

- Davis BE, Gauvreau GM. The ABCs and DEGs (Differentially Expressed Genes) of Airway Hyperresponsiveness. Am J Respir Crit Care Med. 2023;207(12):1545-6. doi: 10.1164/rccm.202303-0614ED.
- 28. Busse WW. The relationship of airway hyperresponsiveness and airway inflammation: Airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest. 2010;138:4S-10S. doi: 10.1378/chest.10-0100.
- Hallstrand TS, Moody MW, Wurfel MM, Schwartz LB, Henderson WR Jr, Aitken ML. Inflammatory basis of exercise-induced bronchoconstriction. Am J Respir Crit Care Med. 2005;172(6):679-86. doi: 10.1164/rccm.200412-1667OC.
- 30. Camoretti-Mercado B, Lockey RF. Airway smooth muscle pathophysiology in asthma. J Allergy Clin Immunol. 2021;147:1983-95. doi: 10.1016/j.jaci.2021.03.035.
- 31. Porsbjerg C, Brannan JD, Anderson SD, Backer V. Relationship between airway responsiveness to mannitol and to methacholine and markers of airway inflammation, peak flow variability and quality of life in asthma patients. Clin Exp Allergy. 2008;38(1):43-50. doi: 10.1111/j.1365-2222.2007.02878.x.
- 32. Khatri SB, Iaccarino JM, Barochia A, Soghier I, Akuthota P, Brady A, et al. Use of fractional exhaled nitric oxide to guide the treatment of asthma: an official American Thoracic Society clinical practice guideline. Am J Respir Crit Care Med. 2021;204:e97-e109. doi: 10.1164/rccm.202109-2093ST.
- 33. Sverrild A, Porsbjerg C, Thomsen SF, Backer V. Airway hyperresponsiveness to mannitol and methacholine and exhaled nitric oxide: a random-sample population study. J Allergy Clin Immunol. 2010;126:952-8. doi: 10.1016/j.jaci.2010.08.028.
- 34. Payne DN, Adcock IM, Wilson NM, Oates T, Scallan M, Bush A. Relationship between exhaled nitric oxide and mucosal eosino-philic inflammation in children with difficult asthma, after treatment with oral prednisolone. Am J Respir Crit Care Med. 2001;164(8 Pt 1):1376-81. doi: 10.1164/ajrccm.164.8.2101145.
- 35. Downie SR, Salome CM, Verbanck S, Thompson B, Berend N, King GG. Ventilation heterogeneity is a major determinant of airway hyperresponsiveness in asthma, independent of airway inflammation. Thorax. 2007;62(8):684-9. doi: 10.1136/thx.2006.069682.
- 36. Schleich FN, Seidel L, Sele J, Manise M, Quaedvlieg V, Michils A, et al. Exhaled nitric oxide thresholds associated with a sputum eosinophil count >3% in a cohort of unselected patients with asthma. Thorax. 2010;65:1039-44. doi: 10.1136/thx.2009.124925.
- 37. Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al; American Thoracic Society Committee on Interpretation of Exhaled Nitric Oxide Levels (FENO) for Clinical Applications. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med. 2011;184(5):602-15. doi: 10.1164/rccm.9120-11ST.
- 38. Shaw DE, Berry MA, Thomas M, Green RH, Brightling CE, Wardlaw AJ, et al. The use of exhaled nitric oxide to guide asthma management: a randomized controlled trial. Am J Respir Crit Care Med. 2007;176:231-7. doi: 10.1164/rccm.200610-1427OC.
- 39. Porsbjerg C, Lund TK, Pedersen L, Backer V. Inflammatory subtypes in asthma are related to airway hyperresponsiveness to mannitol and exhaled NO. J Asthma. 2009;46:606-12. doi: 10.1080/02770900903015654.
- 40. Altman MC, Lai Y, Nolin JD, Long S, Chen CC, Piliponsky AM, et al. Airway epithelium-shifted mast cell infiltration regulates asthmatic inflammation via IL-33 signaling. J Clin Invest. 2019;129(11):4979-91. doi: 10.1172/JCI126402.

- 41. Al-Shaikhly T, Murphy RC, Parker A, Lai Y, Altman MC, Larmore M, et al. Location of eosinophils in the airway wall is critical for specific features of airway hyperresponsiveness and T2 inflammation in asthma. Eur Respir J. 2022;60(2):2101865. doi: 10.1183/13993003.01865-2021.
- 42. Hvidtfeldt M, Sverrild A, Pulga A, Frøssing L, Silberbrandt A, Hostrup M, et al. Airway hyperresponsiveness reflects corticosteroid-sensitive mast cell involvement across asthma phenotypes. J Allergy Clin Immunol. 2023;152(1):107-16.e4. doi: 10.1016/j.jaci.2023.03.001.
- Cartier A, Thomson NC, Frith PA, Roberts R, Hargreave FE. Allergen-induced increase in bronchial responsiveness to histamine: relationship to the late asthmatic response and change in airway caliber. J Allergy Clin Immunol. 1982;70:170-7. doi: 10.1016/0091-6749(82)90038-0.
- 44. Anderson SD, Kippelen P. Airway injury as a mechanism for exercise-induced bronchoconstriction in elite athletes. J Allergy Clin Immunol. 2008;122(2):225-35. doi: 10.1016/j.jaci.2008.05.001.
- Kippelen P, Anderson SD. Airway injury during high-level exercise. Br J Sports Med. 2012;46(6):385-90. doi: 10.1136/BJSPORTS-2011-090819.
- 46. Sverrild A, Andreasen AH, Westergaard CG, von Bülow A, Udesen PB, Thomsen SF, et al. Airway hyperresponsiveness to inhaled mannitol identifies a cluster of noneosinophilic asthma patients with high symptom burden. J Allergy Clin Immunol Pract. 2021;9:4029-36. e2. doi: 10.1016/j.jaip.2021.07.021.
- 47. Hvidtfeldt M, Sverrild A, Backer V, Porsbjerg C. Airway hyperresponsiveness to mannitol improves in both type 2 high and type 2 low asthma after specialist management. J Asthma. 2021;58:1221-8. doi: 10.1080/02770903.2020.1780255.
- Hallstrand TS, Moody MW, Aitken ML, Henderson WR Jr. Airway immunopathology of asthma with exercise-induced bronchoconstriction. J Allergy Clin Immunol. 2005;116:586-93. doi: 10.1016/j. jaci.2005.04.035.
- Duong M, Subbarao P, Adelroth E, Obminski G, Strinich T, Inman M, et al. Sputum eosinophils and the response of exercise-induced bronchoconstriction to corticosteroid in asthma. Chest. 2008;133: 404-11. doi: 10.1378/chest.07-2048.
- Hallstrand TS, Lai Y, Henderson WR Jr, Altemeier WA, Gelb MH. Epithelial regulation of eicosanoid production in asthma. Pulm Pharmacol Ther. 2012;25(6):432-7. doi: 10.1016/j.pupt.2012.02.004.
- Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med. 2009;360(10):973-84. doi:10.1056/NEJ-Moa080899131.
- 52. Helenius I, Lumme A, Haahtela T. Asthma, airway inflammation and treatment in elite athletes. Sports Med. 2005;35:565-74. doi: 10.2165/00007256-200535070-00002.
- 53. Helenius I, Rytila P, Sarna S, Lumme A, Helenius M, Remes V, et al. Effect of continuing or finishing high-level sports on airway inflammation, bronchial hyperresponsiveness, and asthma: a 5-year prospective follow-up study of 42 highly trained swimmers. J Allergy Clin Immunol. 2002;109:962-8. doi: 10.1067/mai.2002.124769a.
- 54. Bougault V, Turmel J, Boulet LP. Airway hyperresponsiveness in elite swimmers: is it a transient phenomenon? J Allergy Clin Immunol. 2011;127(4):892-8. doi: 10.1016/j.jaci.2010.11.003.
- 55. Sverrild A, Bergqvist A, Baines KJ, Porsbjerg C, Andersson CK, Thomsen SF, et al. Airway responsiveness to mannitol in asthma is associated with chymase-positive mast cells and eosinophilic airway inflammation. Clin Exp Allergy. 2016;46(2):288-97. doi: 10.1111/ cea.12609.

- Drake MG, Scott GD, Blum ED, Lebold KM, Nie Z, Lee JJ, et al. Eosinophils increase airway sensory nerve density in mice and in human asthma. Sci Transl Med. 2018;10:eaar8477. doi: 10.1126/ scitranslmed.aar8477.
- Costello RW, Schofield BH, Kephart GM, Gleich GJ, Jacoby DB, Fryer AD. Localization of eosinophils to airway nerves and effect on neuronal M2 muscarinic receptor function. Am J Physiol. 1997;273(1 Pt 1):L93-103. doi: 10.1152/ajplung.1997.273.1.L93.
- Hallstrand TS, Chi EY, Singer AG, Gelb MH, Henderson WR Jr. Secreted phospholipase A2 group X overexpression in asthma and bronchial hyperresponsiveness. Am J Respir Crit Care Med. 2007;176(11):1072-8. doi: 10.1164/rccm.200707-1088OC.
- Lai Y, Altemeier WA, Vandree J, Piliponsky AM, Johnson B, Appel CL, et al. Increased density of intraepithelial mast cells in patients with exercise-induced bronchoconstriction regulated through epithelially derived thymic stromal lymphopoietin and IL-33. J Allergy Clin Immunol. 2014;133(5):1448-55. doi: 10.1016/j.jaci.2013.08.052.
- 60. Hallstrand TS, Wurfel MM, Lai Y, Ni Z, Gelb MH, Altemeier WA, et al. Transglutaminase 2, a novel regulator of eicosanoid production in asthma revealed by genome-wide expression profiling of distinct asthma phenotypes. PLoS One. 2010;5(1):e8583. doi: 10.1371/journal.pone.0008583.
- 61. Hinks TS, Zhou X, Staples KJ, Dimitrov BD, Manta A, Petrossian T, et al. Innate and adaptive T cells in asthmatic patients: Relationship to severity and disease mechanisms. J Allergy Clin Immunol. 2015;136(2):323-33. doi: 10.1016/j.jaci.2015.01.014.
- 62. Tiotiu A, Badi Y, Kermani NZ, Sanak M, Kolmert J, Wheelock CE, et al. Association of differential mast cell activation with granulocytic inflammation in severe asthma. Am J Respir Crit Care Med 2022;205(4):397-411. doi: 10.1164/rccm.202102-0355OC.
- 63. Khalfaoui L, Symon FA, Couillard S, Hargadon B, Chaudhuri R, Bicknell S, et al. Airway remodelling rather than cellular infiltration characterizes both type2 cytokine biomarker-high and -low severe asthma. Allergy. 2022;77(10):2974-6. doi: 10.1111/all.15376.
- 64. Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med. 1999;160(3):1001-8. doi: 10.1164/ajrccm.160.3.9812110.
- 65. Dahlin JS, Malinovschi A, Öhrvik H, Sandelin M, Janson C, Alving K, et al. Lin- CD34hi CD117int/hi FcεRI+ cells in human blood constitute a rare population of mast cell progenitors. Blood. 2016;127(4):383-91. doi: 10.1182/blood-2015-06-650648.
- 66. Salomonsson M, Malinovschi A, Kalm-Stephens P, Dahlin JS, Janson C, Alving K, et al. Circulating mast cell progenitors correlate with reduced lung function in allergic asthma. Clin Exp Allergy. 2019;49(6):874-82. doi: 10.1111/cea.13388.
- Allakhverdi Z, Comeau MR, Smith DE, Toy D, Endam LM, Desrosiers M, et al. CD34+ hemopoietic progenitor cells are potent effectors of allergic inflammation. J Allergy Clin Immunol. 2009;123(2):472– 8. doi: 10.1016/j.jaci.2008.10.022.
- Smith SG, Gugilla A, Mukherjee M, Merim K, Irshad A, Tang W, et al. Thymic stromal lymphopoietin and IL-33 modulate migration of hematopoietic progenitor cells in patients with allergic asthma. J Allergy Clin Immunol. 2015;135(6):1594-602. doi: 10.1016/j.jaci.2014.12.1918.
- 69. Galdiero MR, Varricchi G, Seaf M, Marone G, Levi-Schaffer F, Marone G. Bidirectional Mast Cell-Eosinophil Interactions in Inflammatory Disorders and Cancer. Front Med (Lausanne). 2017;4:103. doi: 10.3389/fmed.2017.00103.

- Minai-Fleminger Y, Elishmereni M, Vita F, Soranzo MR, Mankuta D, Zabucchi G, et al. Ultrastructural evidence for human mast cell-eosinophil interactions in vitro. Cell Tissue Res. 2010;341(3):405-15. doi: 10.1007/s00441-010-1010-8
- 71. Elishmereni M, Alenius HT, Bradding P, Mizrahi S, Shikotra A, Minai-Fleminger Y, et al. Physical interactions between mast cells and eosin-ophils: a novel mechanism enhancing eosinophil survival in vitro. Allergy, 2011;66(3):376-85. doi: 10.1111/j.1398-9995.2010.02494.x.
- 72. Elishmereni M, Bachelet I, Nissim Ben-Efraim AH, Mankuta D, Levi-Schaffer F. Interacting mast cells and eosinophils acquire an enhanced activation state in vitro. Allergy. 2013;68(2):171-9. doi: 10.1111/all.12059.
- Fricker M, Qin L, Niessen N, Baines KJ, McDonald VM, Scott HA, et al. Relationship of sputum mast cells with clinical and inflammatory characteristics of asthma. Clin Exp Allergy. 2020;50(6):696-707. doi: 10.1111/cea.13609
- Maun HR, Jackman JK, Choy DF, Loyet KM, Staton TL, Jia G, Dressen A, et al. An Allosteric Anti-tryptase Antibody for the Treatment of Mast Cell-Mediated Severe Asthma. Cell. 2020;180(2):406. doi: 10.1016/j.cell.2020.01.003.
- Devos FC, Boonen B, Alpizar YA, Maes T, Hox V, Seys S, et al. Neuro-immune interactions in chemical-induced airway hyperreactivity. Eur Respir J. 2016;48:380-92. doi: 10.1183/13993003.01778-2015.
- 76. Froghi S, Grant CR, Tandon R, Quaglia A, Davidson B, Fuller B. New insights on the role of TRP channels in calcium Signalling and immunomodulation: review of pathways and implications for clinical practice. Clin Rev Allergy Immunol. 2021;60:271 92. doi: 10.1007/s12016-020-08824-3.
- 77. Caceres AI, Brackmann M, Elia MD, Bessac BF, del Camino D, D'Amours M, et al. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc Natl Acad Sci U S A. 2009;106(22):9099-104. doi: 10.1073/pnas.0900591106.
- 78. Patel KR, Aven L, Shao F, Krishnamoorthy N, Duvall MG, Levy BD, et al. Mast cell-derived neurotrophin 4 mediates allergen-induced airway hyperinnervation in early life. Mucosal Immunol. 2016;9(6):1466-76. doi: 10.1038/mi.2016.11.
- 79. Cyphert JM, Kovarova M, Allen IC, Hartney JM, Murphy DL, Wess J, et al. Cooperation between mast cells and neurons is essential for antigen-mediated bronchoconstriction. J Immunol. 2009;182(12):7430-9. doi: 10.4049/jimmunol.0900039.
- 80. Hallstrand TS. New insights into pathogenesis of exercise-induced bronchoconstriction. Curr Opin Allergy Clin Immunol. 2012;12(1):42-8. doi: 10.1097/ACI.0b013e32834ecc67.
- 81. Murphy RC, Hallstrand TS. Exploring the origin and regulatory role of mast cells in asthma. Curr Opin Allergy Clin Immunol. 2021;21(1):71-8. doi: 10.1097/ACI.0000000000000703.
- 82. Bonser LR, Erle DJ. The airway epithelium in asthma. Adv Immunol. 2019;142:1-34. doi: 10.1016/bs.ai.2019.05.001.
- 83. Hellings PW, Steelant B. Epithelial barriers in allergy and asthma. J Allergy Clin Immunol. 2020;145(6):1499-509. doi: 10.1016/j. jaci.2020.04.010.
- 84. Noureddine N, Chalubinski M, Wawrzyniak P. The role of defective epithelial barriers in allergic lung disease and asthma development. J Asthma Allergy. 2022;15:487-504. doi: 10.2147/JAA.S324080.
- 85. Russell RJ, Boulet LP, Brightling CE, Pavord ID, Porsbjerg C, Dorscheid D, et al. The airway epithelium: an orchestrator of inflammation, a key structural barrier and a therapeutic target in severe asthma. Eur Respir J. 2024;63(4):2301397. doi: 10.1183/13993003.01397-2023.

- 86. Lambrecht BN, Hammad H. The airway epithelium in asthma. Nat Med. 2012;18(5):684-92. doi: 10.1038/nm.2737.
- 87. Allstrand TS, Hackett TL, Altemeier WA, Matute-Bello G, Hansbro PM, Knight DA. Airway epithelial regulation of pulmonary immune homeostasis and inflammation. Clin Immunol. 2014;151(1):1-15. doi: 10.1016/j.clim.2013.12.003.
- 88. Theofani E, Tsitsopoulou A, Morianos I, Semitekolou M. Severe Asthmatic Responses: The Impact of TSLP. Int J Mol Sci. 2023;24(8):7581. doi: 10.3390/ijms24087581.
- 89. Panettieri R Jr, Lugogo N, Corren J, Ambrose CS. Tezepelumab for Severe Asthma: One Drug Targeting Multiple Disease Pathways and Patient Types. J Asthma Allergy. 2024;17:219-36. doi: 10.2147/JAA.S342391.
- 90. Davies DE. The role of the epithelium in airway remodeling in asthma. Proc Am Thorac Soc. 2009;6(8):678-82. doi: 10.1513/pats.200907-067DP.
- 91. Nilsson H, Dragomir A, Ahlander A, Johannesson M, Roomans GM. Effects of hyperosmotic stress on cultured airway epithelial cells. Cell Tissue Res. 2007;330(2):257-69. doi: 10.1007/s00441-007-0482-7.
- 92. De Grove KC, Provoost S, Brusselle GG, Joos GF, Maes T. Insights in particulate matter-induced allergic airway inflammation: Focus on the epithelium. Clin Exp Allergy. 2018;48(7):773-86. doi: 10.1111/cea.13178.
- 93. Kim N, Han DH, Suh MW, Lee JH, Oh SH, Park MK. Effect of lipopolysaccharide on diesel exhaust particle-induced junctional dysfunction in primary human nasal epithelial cells. Environ Pollut. 2019;248:736-742. doi: 10.1016/j.envpol.2019.02.082.
- 94. Michaudel C, Mackowiak C, Maillet I, Fauconnier L, Akdis CA, Sokolowska M, et al. Ozone exposure induces respiratory barrier biphasic injury and inflammation controlled by IL-33. J Allergy Clin Immunol. 2018;142(3):942-58. doi: 10.1016/j.jaci.2017.11.044.
- 95. Simmons S, Erfinanda L, Bartz C, Kuebler WM. Novel mechanisms regulating endothelial barrier function in the pulmonary microcirculation. J Physiol. 2019;597(4):997-1021. doi: 10.1113/JP276245.
- 96. Van Schoor J, Joos GF, Pauwels RA. Indirect bronchial hyperresponsiveness in asthma: mechanisms, pharmacology and implications for clinical research. Eur Respir J. 2000;16(3):514-33. doi: 10.1034/j.1399-3003.2000.016003514.x.
- 97. Fedan JS, Yuan LX, Chang VC, Viola JO, Cutler D, Pettit LL. Osmotic regulation of airway reactivity by epithelium. J Pharmacol Exp Ther. 1999;289(2):901-10.
- 98. Edwards DA, Chung KF. Mouth breathing, dry air, and low water permeation promote inflammation, and activate neural pathways, by osmotic stresses acting on airway lining mucus. QRB Discov. 2023;4:e3. doi: 10.1017/qrd.2023.1.
- 99. Anderson SD, Schoeffel RE, Follet R, Perry CP, Daviskas E, Kendall M. Sensitivity to heat and water loss at rest and during exercise in asthmatic patients. Eur J Respir Dis. 1982;63(5):459-71.
- 100. Smith CM, Anderson SD. Inhalational challenge using hypertonic saline in asthmatic subjects: a comparison with responses to hyperpnoea, methacholine and water. Eur Respir J. 1990;3(2):144-51. doi: 10.1183/09031936.93.03020144
- Kersten ET, Driessen JM, van der Berg JD, Thio BJ. Mannitol and exercise challenge tests in asthmatic children. Pediatr Pulmonol. 2009;44(7):655-61. doi: 10.1002/ppul.21034.
- 102. Brannan JD, Koskela H, Anderson SD, Chew N. Responsiveness to mannitol in asthmatic subjects with exercise- and hyperventilation-induced asthma. Am J Respir Crit Care Med. 1998;158(4):1120-6. doi: 10.1164/ajrccm.158.4.9802087.

- 103. Kippelen P, Fitch KD, Anderson SD, Bougault V, Boulet LP, Rundell KW, et al. Respiratory health of elite athletes preventing airway injury: a critical review. Br J Sports Med. 2012;46:471-6. doi: 10.1136/bjsports-2012-091056.
- 104. Goossens J, Jonckheere AC, Seys SF, Dilissen E, Decaesteker T, Goossens, et al. Activation of epithelial and inflammatory pathways in adolescent elite athletes exposed to intense exercise and air pollution. Thorax. 2023;78(8):775-83. doi: 10.1136/thorax-2022-219651.
- 105. Carlsen KH. Sports in extreme conditions: the impact of exercise in cold temperatures on asthma and bronchial hyper-responsiveness in athletes. Br J Sports Med. 2012;46(11):796-9. doi: 10.1136/bjsports-2012-091292.
- 106. Salari H, Chan-Yeung M. Release of 15-hydroxyeicosatetraenoic acid (15-HETE) and prostaglandin E2 (PGE2) by cultured human bronchial epithelial cells. Am J Respir Cell Mol Biol. 1989;1:245-250. doi: 10.1165/ajrcmb/1.3.245.
- 107. Ruan YC, Zhou W, Chan HC. Regulation of smooth muscle contraction by the epithelium: role of prostaglandins. Physiology (Bethesda). 2011;26:156-70. doi: 10.1152/physiol.00036.2010.
- 108. Sastre B, del Pozo V. Role of PGE2 in asthma and nonasthmatic eosinophilic bronchitis. Mediators Inflamm. 2012;2012:645383. doi: 10.1155/2012/645383.
- 109. Chan BCL, Lam CWK, Tam LS, Wong CK. IL33: Roles in Aller-gic Inflammation and Therapeutic Perspectives. Front Immunol. 2019;10:364. doi: 10.3389/fimmu.2019.00364.
- 110. Tsurikisawa N, Oshikata C, Tsuburai T, Saito H, Sekiya K, Tanimoto H, et al. Bronchial hyperresponsiveness to histamine correlates with airway remodelling in adults with asthma. Respir Med. 2010;104(9):1271-7. doi: 10.1016/j.rmed.2010.03.026.
- Boulet LP, Turcotte H, Laviolette M, Naud F, Bernier MC, Martel S, et al. Airway hyperresponsiveness, inflammation, and subepithelial collagen deposition in recently diagnosed versus long-standing mild asthma. Influence of inhaled corticosteroids. Am J Respir Crit Care Med. 2000;162(4 Pt 1):1308-13. doi: 10.1164/ajrccm.162.4.9910051.
- 112. Ward C, Pais M, Bish R, Reid D, Feltis B, Johns D, Walters EH. Airway inflammation, basement membrane thickening and bronchial hyperresponsiveness in asthma. Thorax. 2002;57(4):309-16. doi: 10.1136/thorax.57.4.309.
- 113. Osei ET, B Mostaço-Guidolin L, Hsieh A, Warner SM, Al-Fouadi M, Wang M, et al. Epithelial-interleukin-1 inhibits collagen formation by airway fibroblasts: Implications for asthma. Sci Rep. 2020;10(1):8721. doi: 10.1038/s41598-020-65567-z.
- 114. Mostaço-Guidolin LB, Osei ET, Ullah J, Hajimohammadi S, Fouadi M, Li X, et al. Defective fibrillar collagen organization by fibroblasts contributes to airway remodeling in asthma. Am J Respir Crit Care Med. 2019;200:431-43. doi: 10.1164/rccm.201810-1855OC.
- Michaeloudes C, Abubakar-Waziri H, Lakhdar R, Raby K, Dixey P, Adcock IM, et al. Molecular mechanisms of oxidative stress in asthma. Mol Aspects Med. 2022;85:101026. doi: 10.1016/j. mam.2021.101026.
- 116. Reeves SR, Kolstad T, Lien T-Y, Elliott M, Ziegler SF, Wight TN, et al. Asthmatic airway epithelial cells differentially regulate fibroblast expression of extracellular matrix components. J Allergy Clin Immunol. 2014;134:663-70.el. doi: 10.1016/j.jaci.2014.04.007.
- 117. Koopmans T, Crutzen S, Menzen MH, Halayko AJ, Hackett TL, Knight DA, et al. Selective targeting of CREB-binding protein/β-catenin inhibits growth of and extracellular matrix remodelling by airway smooth muscle. Br J Pharmacol. 2016;173:3327-41. doi: 10.1111/bph.13620.

- 118. Mostaco-Guidolin L, Hajimohammadi S, Vasilescu DM, Hackett TL. Application of Euclidean distance mapping for assessment of basement membrane thickness distribution in asthma. J Appl Physiol (1985). 2017;123(2):473-81. doi: 10.1152/japplphysiol.00171.2017.
- 119. Grigoraş A, Căruntu ID, Grigoraş CC, Mihăescu T, Amălinei C. Relationship between immunohistochemical assessment of bronchial mucosa microvascularization and clinical stage in asthma. Rom J Morphol Embryol. 2012;53(3):485-90.
- 120. Wilson JW, Kotsimbos T. Airway vascular remodeling in asthma. Curr Allergy Asthma Rep. 2003;3(2):153-8. doi: 10.1007/s11882-003-0028-3.
- 121. Keglowich LF, Borger P. The Three A's in Asthma Airway Smooth Muscle, Airway Remodeling & Angiogenesis. Open Respir Med J. 2015;9:70-80. doi: 10.2174/1874306401509010070.
- 122. Mostaço-Guidolin LB, Yang CX, Hackett TL. Pulmonary Vascular Remodeling Is an Early Feature of Fatal and Nonfatal Asthma. Am J Respir Cell Mol Biol. 2021;65(1):114-8. doi: 10.1165/rcmb.2020-0339LE.
- 123. Canè L, Poto R, Palestra F, Pirozzi M, Parashuraman S, Iacobucci I, et al. TSLP is localized in and released from human lung macrophages activated by T2-high and T2-low stimuli: relevance in asthma and COPD. Eur J Intern Med. 2024;124:89-98. doi: 10.1016/j.ejim.2024.02.020.
- 124. Solway J, Fredberg JJ. Perhaps airway smooth muscle dysfunction contributes to asthmatic bronchial hyperresponsiveness after all. Am J Respir Cell Mol Biol. 1997;17(2):144-6. doi: 10.1165/ajrcmb.17.2.f137.
- 125. Ijpma G, Matusovsky O, Lauzon AM. Accumulating evidence for increased velocity of airway smooth muscle shortening in asthmatic airway hyperresponsiveness. J Allergy (Cairo). 2012;2012:156909. doi: 10.1155/2012/156909.
- 126. Malavia NK, Raub CB, Mahon SB, Brenner M, Panettieri RA Jr, George SC. Airway epithelium stimulates smooth muscle proliferation. Am J Respir Cell Mol Biol. 2009;41(3):297-304. doi: 10.1165/rcmb.2008-0358OC.
- 127. Lan B, Mitchel JA, O'Sullivan MJ, Park CY, Kim JH, Cole WC, et al. Airway epithelial compression promotes airway smooth muscle proliferation and contraction. Am J Physiol Lung Cell Mol Physiol. 2018;315(5):L645-52. doi: 10.1152/ajplung.00261.2018.
- 128. Zhou J, Alvarez-Elizondo MB, Botvinick E, George SC. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction. J Appl Physiol (1985). 2012;112(4):627-37. doi: 10.1152/japplphysiol.00739.2011.
- 129. Shariff S, Shelfoon C, Holden NS, Traves SL, Wiehler S, Kooi C, et al. Human Rhinovirus Infection of Epithelial Cells Modulates Airway Smooth Muscle Migration. Am J Respir Cell Mol Biol. 2017;56(6):796-803. doi: 10.1165/rcmb.2016-0252OC.
- 130. Celle A, Esteves P, Cardouat G, Beaufils F, Eyraud E, Dupin I, et al. Rhinovirus infection of bronchial epithelium induces specific bronchial smooth muscle cell migration of severe asthmatic patients. J Allergy Clin Immunol. 2022;150(1):104-13. doi: 10.1016/j. jaci.2022.01.022.
- 131. Parikh V, Scala J, Patel R, Corbi C, Lo D, Bochkov YA, et al. Rhinovirus C15 Induces Airway Hyperresponsiveness via Calcium Mobilization in Airway Smooth Muscle. Am J Respir Cell Mol Biol. 2020;62(3):310-8. doi: 10.1165/rcmb.2019-0004OC.
- 132. Hackett TL, Warner SM, Stefanowicz D, Shaheen F, Pechkovsky DV, Murray LA, et al. Induction of epithelial-mesenchymal transition in primary airway epithelial cells from patients with asthma

- by transforming growth factor-betal. Am J Respir Crit Care Med. 2009;180(2):122-33. doi: 10.1164/rccm.200811-1730OC.
- 133. Wu J, Liu F, Zhao J, Wei Y, Lv J, Dong F, et al. Thymic stromal lymphopoietin promotes asthmatic airway remodelling in human lung fibroblast cells through STAT3 signalling pathway. Cell Biochem Funct. 2013;31(6):496-503. doi: 10.1002/cbf.2926.
- 134. Shan L, Redhu NS, Saleh A, Halayko AJ, Chakir J, Gounni AS. Thymic stromal lymphopoietin receptor-mediated IL-6 and CC/CXC chemokines expression in human airway smooth muscle cells: role of MAPKs (ERK1/2, p38, and JNK) and STAT3 pathways. J Immunol. 2010;184(12):7134-43. doi: 10.4049/jimmunol.0902515.
- 135. Zhang K, Shan L, Rahman MS, Unruh H, Halayko AJ, Gounni AS. Constitutive and inducible thymic stromal lymphopoietin expression in human airway smooth muscle cells: role in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2007;293(2):L375-82. doi: 10.1152/ajplung.00045.2007.
- 136. Smolinska S, Antolín-Amérigo D, Popescu FD, Jutel M. Thymic Stromal Lymphopoietin (TSLP), Its Isoforms and the Interplay with the Epithelium in Allergy and Asthma. Int J Mol Sci. 2023;24(16):12725. doi: 10.3390/ijms241612725.
- 137. Gauvreau GM, Sehmi R, Ambrose CS, Griffiths JM. Thymic stromal lymphopoietin: its role and potential as a therapeutic target in asthma. Expert Opin Ther Targets. 2020;24(8):777-92. doi: 10.1080/14728222.2020.17832425.
- 138. Corren J, Brightling CE, Boulet LP, et al. Not just an anti-eosinophil drug: tezepelumab treatment for type 2 asthma and beyond. Eur Respir J. 2023;61(3):2202202. doi: 10.1183/13993003.02202-2022.
- O'Sullivan MJ, Lan B. The Aftermath of Bronchoconstriction.
 J Eng Sci Med Diagn Ther. 2019;2(1):0108031-108036. doi: 10.1115/1.4042318.
- 140. Tliba O, Panettieri RA Jr. Paucigranulocytic asthma: uncoupling of airway obstruction from inflammation. J Allergy Clin Immunol. 2019;143(4):1287-94. doi: 10.1016/j.jaci.2018.06.008.
- 141. Chapman DG, Berend N, King GG, Salome CM. Increased airway closure is a determinant of airway hyperresponsiveness. Eur Respir J. 2008;32(6):1563-9. doi: 10.1183/09031936.00114007.
- 142. Witt CA, Sheshadri A, Carlstrom L, Tarsi J, Kozlowski J, Wilson B, et al; NHLBI Severe Asthma Research Program (SARP). Longitudinal changes in airway remodeling and air trapping in severe asthma. Acad Radiol. 2014;21(8):986-93. doi: 10.1016/j. acra.2014.05.001.
- 143. Awadh N, Müller NL, Park CS, Abboud RT, FitzGerald JM. Airway wall thickness in patients with near fatal asthma and control groups: assessment with high resolution computed tomographic scanning. Thorax. 1998;53(4):248-53. doi: 10.1136/thx.53.4.248.
- 144. Gono H, Fujimoto K, Kawakami S, Kubo K. Evaluation of airway wall thickness and air trapping by HRCT in asymptomatic asthma. Eur Respir J. 2003;22(6):965-71. doi: 10.1183/09031936.03.00085302.
- 145. Lambert RK, Paré PD. Lung parenchymal shear modulus, airway wall remodeling, and bronchial hyperresponsiveness. J Appl Physiol. 1997;83(1):140-7. doi: 10.1152/jappl.1997.83.1.140.
- 146. Macklem PT. A theoretical analysis of the effect of airway smooth muscle load on airway narrowing. Am J Respir Crit Care Med. 1996;153(1):83-9. doi: 10.1164/ajrccm.153.1.8542167.
- 147. Lambert R, Wiggs B, Kuwano K, Hogg J, Pare P. Functional significance of increased airway smooth muscle in asthma and COPD. J Appl Physiol. 1993;74(6):2771-81. doi: 10.1152/jappl.1993.74.6.2771.
- 148. Boulet L-P, Belanger M, Carrier G. Airway responsiveness and bronchial-wall thickness in asthma with or without fixed airflow

- obstruction. Am J Respir Crit Care Med. 1995;152(3):865-71. doi: 10.1164/ajrccm.152.3.7663797.
- 149. van der Wiel E, ten Hacken NH, Postma DS, van den Berge M. Small-airways dysfunction associates with respiratory symptoms and clinical features of asthma: a systematic review. J Allergy Clin Immunol. 2013;131(3):646-57. doi: 10.1016/j.jaci.2012.12.1567.
- 150. Hsieh A, Assadinia N, Hackett TL. Airway remodeling heterogeneity in asthma and its relationship to disease outcomes. Front Physiol. 2023;14:1113100. doi: 10.3389/fphys.2023.1113100.
- 151. Irvin CG, Bates JH. Physiologic dysfunction of the asthmatic lung: what's going on down there, anyway? Proc Am Thorac Soc. 2009;6(3):306-11. doi: 10.1513/pats.200808-091RM.
- 152. Altes TA, Mugler JP 3rd, Ruppert K, Tustison NJ, Gersbach J, Szentpetery S, et al. Clinical correlates of lung ventilation defects in asthmatic children. J Allergy Clin Immunol. 2016;137(3):789-96.e7. doi: 10.1016/j.jaci.2015.08.045.
- 153. Pascoe CD, Seow CY, Hackett TL, Paré PD, Donovan GM. Heterogeneity of airway wall dimensions in humans: a critical determinant of lung function in asthmatics and nonasthmatics. Am J Physiol Lung Cell Mol Physiol. 2017;312(3):L425-31. doi: 10.1152/ajplung.00421.2016.
- 154. James AL, Donovan GM, Green FHY, Mauad T, Abramson MJ, Cairncross A, et al. Heterogeneity of Airway Smooth Muscle Remodeling in Asthma. Am J Respir Crit Care Med. 2023;207(4):452-60. doi: 10.1164/rccm.202111-2634OC.
- 155. Venegas JG, Winkler T, Musch G, Vidal Melo MF, Layfield D, Tgavalekos N, et al. Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature. 2005;434(7034):777-82. doi: 10.1038/nature03490.
- 156. de Lange EE, Altes TA, Patrie JT, Parmar J, Brookeman JR, Mugler JP 3rd, et al. The variability of regional airflow obstruction within the lungs of patients with asthma: assessment with hyperpolarized helium-3 magnetic resonance imaging. J Allergy Clin Immunol. 2007;119(5):1072-8. doi: 10.1016/j.jaci.2006.12.659.
- Tzeng YS, Lutchen K, Albert M. The difference in ventilation heterogeneity between asthmatic and healthy subjects quantified using hyperpolarized 3He MRI. J Appl Physiol (1985). 2009;106:813-22.
- 158. Lutchen KR, Gillis H. Relationship between heterogeneous changes in airway morphometry and lung resistance and elastance. J Appl Physiol (1985). 1997;83(4):1192-201. doi: 10.1152/jappl.1997.83.4.1192.
- 159. Tgavalekos NT, Tawhai M, Harris RS, Musch G, Vidal-Melo M, Venegas JG, et al. Identifying airways responsible for heterogeneous ventilation and mechanical dysfunction in asthma: an image functional modeling approach. J Appl Physiol (1985). 2005;99(6):2388-97. doi: 10.1152/japplphysiol.00391.2005.
- 160. Dunican EM, Elicker BM, Gierada DS, Nagle SK, Schiebler ML, Newell JD, et al; National Heart Lung and Blood Institute (NHLBI) Severe Asthma Research Program (SARP). Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J Clin Invest. 2018;128(3):997-1009. doi: 10.1172/JCI95693.
- 161. Tang M, Elicker BM, Henry T, Gierada DS, Schiebler ML, Huang BK, et al. Mucus Plugs Persist in Asthma, and Changes in Mucus Plugs Associate with Changes in Airflow over Time. Am J Respir Crit Care Med. 2022;205(9):1036-45. doi: 10.1164/rccm.202110-2265OC.
- 162. Yoshida Y, Takaku Y, Nakamoto Y, Takayanagi N, Yanagisawa T, Takizawa H, et al. Changes in airway diameter and mucus plugs in patients with asthma exacerbation. PLoS One. 2020;15(2):e0229238. doi: 10.1371/journal.pone.0229238.

- 163. Mummy DG, Dunican EM, Carey KJ, Evans MD, Elicker BM, Newell JD Jr, et al. Mucus Plugs in Asthma at CT Associated with Regional Ventilation Defects at ³He MRI. Radiology. 2022;303(1):184-90. doi: 10.1148/radiol.2021204616.
- 164. Cockcroft DW, Killian DN, Mellon JJA, Hargreave FE. Bronchial reactivity to inhaled histamine: a method and clinical survey. Clin Allergy. 1977;7(3):253-43. doi: 10.1111/j.1365-2222.1977.tb01448.x.
- 165. Crapo RO, Casaburi R, Coates AL, Enright PL, Hankinson JL, Irvin CG, et al. Guidelines for methacholine and exercise challenge testing-1999. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. Am J Respir Crit Care Med. 2000;161(1):309-29. doi: 10.1164/ajrccm.161.1.ats11-99.
- 166. O'Connor BJ, Aikman SL, Barnes PJ. Tolerance to the nonbronchodilator effects of inhaled beta 2-agonists in asthma. N Engl J Med. 1992;327(17):1204-8. doi: 10.1056/NEJM199210223271704.
- 167. Anderson SD. Indirect challenge tests: Airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest. 2010;138(2 Suppl):25S-30S. doi: 10.1378/chest.10-0116.
- 168. Coates AL, Wanger J, Cockcroft DW, Culver BH; Bronchoprovocation Testing Task Force. ERS technical standard on bronchial challenge testing: general considerations and performance of methacholine challenge tests. Eur Respir J. 2017;49(5):1601526. doi: 10.1183/13993003.01526-2016.
- 169. Cockcroft DW. Measurement of airway responsiveness to inhaled histamine or methacholine: method of continuous aerosol generation and tidal breathing inhalation. In: Hargreave FE, Woolcock AJ, eds. Airway Responsiveness: Measurement and Interpretation. Mississauga, ON, Canada, Astra Canada. 1985:22-28.
- 170. Nieminen MM. Unimodal distribution of bronchial hyperresponsiveness to methacholine in asthmatic patients. Chest. 1992;102(5):1537-43. doi: 10.1378/chest.102.5.1537.
- 171. Cockcroft DW, Berscheid BA, Murdock KY. Unimodal distribution of bronchial responsiveness to inhaled histamine in a random human population. Chest. 1983;83(5):751-4. doi: 10.1378/chest.83.5.751.
- 172. Juniper EF, Cockcroft DW, Hargreave FE. Histamine and Methacholine Inhalation Tests: Tidal Breathing Method—Laboratory Procedure and Standardisation. 2nd ed. Lund, Sweden AB Draco, 1994.
- 173. Pauwels R, Joos G, Van der Straeten M. Bronchial hyperresponsiveness is not bronchial hyperresponsiveness is not bronchial asthma. Clin Allergy. 1988;18(4):317-21. doi: 10.1111/j.1365-2222.1988.tb02878.x.
- 174. Perpiñá Tordera M, García Río F, Álvarez Gutierrez FJ, Cisneros Serrano C, Compte Torrero L, Entrenas Costa LM, et al. Guidelines for the study of nonspecific bronchial hyperresponsiveness in asthma. Spanish Society of Pulmonology and Thoracic Surgery (SEPAR). Arch Bronconeumol. 2013;49(10):432-46. English, Spanish. doi: 10.1016/j.arbres.2013.05.001.
- 175. Brand PL, Duiverman EJ, Postma DS, Waalkens HJ, Kerrebijn KF, van Essen-Zandvliet EE. Peak flow variation in childhood asthma: relationship to symptoms, atopy, airways obstruction and hyperresponsiveness. Dutch CNSLD Study Group. Eur Respir J. 1997;10(6):1242-7. doi: 10.1183/09031936.97.10061242.
- 176. Reddel HK, Salome CM, Peat JK, Woolcock AJ. Which index of peak expiratory flow is most useful in the management of stable asthma? Am J Respir Crit Care Med. 1995;151(5):1320-5. doi: 10.1164/ajrccm.151.5.7735580.
- 177. Dales RE, Ernst P, Hanley JA, Battista RN, Becklake MR. Prediction of airway reactivity from responses to a standardized respiratory symptom questionnaire. Am Rev Respir Dis. 1987;135(4):817-21. doi: 10.1164/arrd.1987.135.4.817.

- 178. Remes ST, Pekkanen J, Remes K, Salonen RO, Korppi M. In search of childhood asthma: questionnaire, tests of bronchial hyperresponsiveness, and clinical evaluation. Thorax. 2002;57(2):120-6. doi: 10.1136/thorax.57.2.120.
- 179. Yurdakul AS, Dursun B, Canbakan S, Cakaloğlu A, Capan N. The assessment of validity of different asthma diagnostic tools in adults. J Asthma. 2005;42(10):843-6. doi: 10.1080/02770900500370981.
- 180. Shin B, Cole SL, Park SJ, Ledford DK, Lockey RF. A new symptom-based questionnaire for predicting the presence of asthma. J Investig Allergol Clin Immunol. 2010;20(1):27-34.
- 181. Mortagy AK, Howell JB, Waters WE. Respiratory symptoms and bronchial reactivity: identification of a syndrome and its relation to asthma. Br Med J (Clin Res Ed). 1986;293(6546):525-9. doi: 10.1136/bmj.293.6546.525.
- 182. Burney PG, Chinn S, Britton JR, Tattersfield AE, Papacosta AO. What symptoms predict the bronchial response to histamine? Evaluation in a community survey of the bronchial symptoms questionnaire (1984) of the International Union Against Tuberculosis and Lung Disease. Int J Epidemiol. 1989;18(1):165-73. doi: 10.1093/ije/18.1.165.
- 183. Tomita K, Sano H, Chiba Y, Sato R, Sano A, Nishiyama O, et al. A scoring algorithm for predicting the presence of adult asthma: a prospective derivation study. Prim Care Respir J. 2013;22(1):51-8. doi: 10.4104/pcrj.2013.00005.
- 184. Anderson SD. 'Índirect' challenges from science to clinical practice. Eur Clin Respir J. 2016;3:31096. doi: 10.3402/ecrj.v3.31096.
- 185. Hallstrand TS, Leuppi JD, Joos G, Hall GL, Carlsen KH, Kaminsky DA, et al. ERS technical standard on bronchial challenge testing: pathophysiology and methodology of indirect airway challenge testing. Eur Respir J. 2018;52(5):1801033. doi: 10.1183/13993003.01033-2018.
- 186. Ramsdell JW. Adenosine airways responsiveness: what does it mean? Chest. 2003;123(4):971-3. doi: 10.1378/chest.123.4.971.
- 187. Argyros GJ, Roach JM, Hurwitz KM, Eliasson AH, Phillips YY. Eucapnic voluntary hyperventilation as a bronchoprovocation technique: development of a standarized dosing schedule in asthmatics. Chest. 1996;109(6):1520-4. doi: 10.1378/chest.109.6.1520.
- 188. Spiering BA, Judelson DA, Rundell KW. An evaluation of standardizing target ventilation for eucapnic voluntary hyperventilation using FEV1. J Asthma 2004;41(7): 745-49. doi: 10.1081/jas-200028004.
- 189. Clinical exercise testing with reference to lung diseases: indications, standardization and interpretation strategies. ERS Task Force on Standardization of Clinical Exercise Testing. Eur Respir J. 1997;10(11):2662-89. doi: 10.1183/09031936.97.10112662.
- British Thoracic Society; Scottish Intercollegiate Guidelines Network. British guideline on the management of asthma. Thorax. 2014;69 Suppl 1:1-192.
- National Institute for Health and Care Excellence. Asthma: diagnosis, monitoring and chronic asthma management. NICE Guideline 80 [NG80]. Available at: https://www.nice.org.uk/guidance/ng80.
- 192. Sano H, Tomita K, Sano A, Saeki S, Nishikawa Y, Nishiyama O, et al. Accuracy of objective tests for diagnosing adult asthma in symptomatic patients: A systematic literature review and hierarchical Bayesian latent-class meta-analysis. Allergol Int. 2019;68(2):191-8. doi: 10.1016/j.alit.2018.08.013.
- 193. Cockcroft DW, Murdock KY, Berscheid BA, Gore BP. Sensitivity and specificity of histamine PC20 determination in a random selection of young college students. J Allergy Clin Immunol. 1992;89(1 Pt 1):23-30. doi: 10.1016/s0091-6749(05)80037-5.

- 194. Brown LL, Martin BL, Morris MJ. Airway hyperresponsiveness by methacholine challenge testing following negative exercise challenge. J Asthma 2004;41(5):553-8. doi: 10.1081/jas-120037656.
- 195. Carlsen KH, Engh G, Mørk M, Schrøder E. Cold air inhalation and exercise-induced bronchoconstriction in relationship to metacholine bronchial responsiveness: different patterns in asthmatic children and children with other chronic lung diseases. Respir Med. 1998;92(2):308-15. doi: 10.1016/s0954-6111(98)90114-7.
- 196. Sin BA, Yildiz OA, Dursun AB, Misirligil Z, Demirel YS. Airway hyperresponsiveness: a comparative study of methacholine and exercise challenges in seasonal allergic rhinitis with or without asthma. J Asthma. 2009;46(5):486-91. doi: 10.1080/02770900902855936.
- 197. Anderson SD, Charlton B, Weiler JM, Nichols S, Spector SL, Pearlman DS; A305 Study Group. Comparison of mannitol and methacholine to predict exercise-induced bronchoconstriction and a clinical diagnosis of asthma. Respir Res. 2009;10(1):4. doi: 10.1186/1465-9921-10-4.
- 198. Kim MH, Song WJ, Kim TW, Jin HJ, Sin YS, Ye YM, et al. Diagnostic properties of the methacholine and mannitol bronchial challenge tests: a comparison study. Respirology. 2014;19(6):852-6. doi: 10.1111/resp.12334.
- 199. Andregnette-Roscigno V, Fernández-Nieto M, Arochena L, García Del Potro M, Aguado E, Sastre J. Methacholine is more sensitive than mannitol for evaluation of bronchial hyper-responsiveness in youth athletes with exercise-induced bronchoconstriction. Pediatr Allergy Immunol. 2012;23(5):501-3. doi: 10.1111/j.1399-3038.2012.01293.x.
- 200. Andregnette-Roscigno V, Fernández-Nieto M, Del Potro MG, Aguado E, Sastre J. Methacholine is more sensitive than mannitol for evaluation of bronchial hyperresponsiveness in children with asthma. J Allergy Clin Immunol. 2010;126(4):869-71. doi: 10.1016/j.jaci.2010.07.025.
- 201. Gibson PG, Saltos N, Borgas T. Airway mast cells and eosino-phils correlate with clinical severity and airway hyperresponsiveness in corticosteroid-treated asthma. J Allergy Clin Immunol. 2000;105(4):752-9. doi: 10.1067/mai.2000.105319.
- 202. Choi IS, Chung SW, Koh YI, Sim MK, Hong SN, Moon JS. Airway hyperresponsiveness to hypertonic saline as a predictive index of exercise-induced bronchoconstriction. Korean J Intern Med. 2005;20(4):284-9. doi: 10.3904/kjim.2005.20.4.284.
- 203. Riedler J, Reade T, Dalton M, Holst D, Robertson C. Hypertonic saline challenge in an epidemiologic survey of asthma in children. Am J Respir Crit Care Med. 1994;150(6 Pt 1):1632-9. doi: 10.1164/ajrccm.150.6.7952626.
- 204. Laitano R, Calzetta L, Matino M, Pistocchini E, Rogliani P. Asthma management with triple ICS/LABA/LAMA combination to reduce the risk of exacerbation: an umbrella review compliant with the PRIOR statement. Expert Opin Pharmacother. 2024:1-11. doi: 10.1080/14656566.2024.2366991.
- 205. Oba Y, Anwer S, Patel T, Maduke T, Dias S. Addition of long-acting beta2 agonists or long-acting muscarinic antagonists versus doubling the dose of inhaled corticosteroids (ICS) in adolescents and adults with uncontrolled asthma with medium dose ICS: a systematic review and network meta-analysis. Cochrane Database Syst Rev. 2023;8(8):CD013797. doi: 10.1002/14651858.CD013797.pub2.
- 206. Spahn JD, Brightling CE, O'Byrne PM, Simpson LJ, Molfino NA, Ambrose CS, et al. Effect of Biologic Therapies on Airway Hyperresponsiveness and Allergic Response: A Systematic Literature Review. J Asthma Allergy. 2023;16:755-774. doi: 10.2147/JAA.S410592.

- 207. Boulet LP, Chapman KR, Côté J, Kalra S, Bhagat R, Swystun VA, et al. Inhibitory effects of an anti-IgE antibody E25 on allergen-induced early asthmatic response. Am J Respir Crit Care Med. 1997;155(6):1835-40. doi: 10.1164/airccm.155.6.9196083.
- 208. Fahy JV, Fleming HE, Wong HH, Liu JT, Su JQ, Reimann J, et al. The effect of an anti-IgE monoclonal antibody on the early- and late-phase responses to allergen inhalation in asthmatic subjects. Am J Respir Crit Care Med. 1997;155(6):1828-34. doi: 10.1164/airccm.155.6.9196082.
- 209. Noga O, Hanf G, Kunkel G. Immunological and clinical changes in allergic asthmatics following treatment with omalizumab. Int Arch Allergy Immunol. 2003;131(1):46-52. doi:10.1159/00007043422.
- 210. Djukanović R, Wilson SJ, Kraft M, Jarjour NN, Steel M, Chung KF, et al. Effects of treatment with anti-immunoglobulin E anti-body omalizumab on airway inflammation in allergic asthma. Am J Respir Crit Care Med. 2004;170(6):583-93. doi:10.1164/rccm.200312-1651OC23.
- 211. Prieto L, Gutiérrez V, Colás C, Tabar A, Pérez-Francés C, Bruno L, et al. Effect of omalizumab on adenosine 5'-monophosphate responsiveness in subjects with allergic asthma. Int Arch Allergy Immunol. 2006;139(2):122-31. doi: 10.1159/000090387.
- 212. Patel BM, Chiang DT, Clark JP, Romero FA, Casale TB. 1022 Effects of omalizumab (Xolair*) on airway hyperresponsiveness. J Allergy Clin Immunol. 2009;123(2):S263. doi: 10.1016/j.jaci.2008.12.102025.
- 213. van Rensen EL, Evertse CE, van Schadewijk WA, van Wijngaarden S, Ayre G, Mauad T, et al. Eosinophils in bronchial mucosa of asthmatics after allergen challenge: effect of anti-IgE treatment. Allergy. 2009;64(1):72-80. doi: 10.1111/j.1398-9995.2008.01881.x.
- 214. Zielen S, Lieb A, De La Motte S, Wagner F, de Monchy J, Fuhr R, et al. Omalizumab protects against allergen-induced bronchoconstriction in allergic (immunoglobulin E-mediated) asthma. Int Arch Allergy Immunol. 2013;160(1):102-10. doi:10.1159/00033924327.
- 215. Hendeles L, Khan YR, Shuster JJ, Chesrown SE, Abu-Hasan M. Omalizumab therapy for asthma patients with poor adherence to inhaled corticosteroid therapy. Ann Allergy Asthma Immunol. 2015;114(1):58-62. doi: 10.1016/j.anai.2014.10.012.
- 216. Leckie MJ, ten Brinke A, Khan J, Diamant Z, O'Connor BJ, Walls CM, et al. Effects of an interleukin-5 blocking monoclonal anti-body on eosinophils, airway hyper-responsiveness, and the late

- asthmatic response. Lancet. 2000;356(9248):2144-8. doi:10.1016/S0140-6736(00)03496-629.
- 217. Flood-Page PT, Menzies-Gow AN, Kay AB, Robinson DS. Eosin-ophil's role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am J Respir Crit Care Med. 2003;167(2):199-204. doi: 10.1164/rccm.200208-789OC30.
- 218. Gauvreau GM, O'Byrne PM, Boulet LP, Wang Y, Cockcroft D, Bigler J, et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med. 2014;370(22):2102-10. doi: 10.1056/NEJMoa1402895.
- 219. Diver S, Khalfaoui L, Emson C, Wenzel SE, Menzies-Gow A, Wechsler ME, et al; CASCADE study investigators. Effect of teze-pelumab on airway inflammatory cells, remodelling, and hyperresponsiveness in patients with moderate-to-severe uncontrolled asthma (CASCADE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir Med. 2021;9(11):1299-312. doi: 10.1016/S2213-2600(21)00226-5.
- 220. Sverrild A, Hansen S, Hvidtfeldt M, Clausson CM, Cozzolino O, Cerps S, et al. The effect of tezepelumab on airway hyperresponsiveness to mannitol in asthma (UPSTREAM). Eur Respir J. 2021;59(1):2101296. doi: 10.1183/13993003.01296-2021.
- 221. Chen ZG, Zhang TT, Li HT, Chen FH, Zou XL, Ji JZ, et al. Neutralization of TSLP inhibits airway remodeling in a murine model of allergic asthma induced by chronic exposure to house dust mite. PLoS One. 2013;8(1):e51268. doi: 10.1371/journal.pone.0051268.
- 222. Menzies-Gow A, Ambrose CS, Colice G, Hunter G, Cook B, Molfino NA, et al. Effect of Tezepelumab on Lung Function in Patients With Severe, Uncontrolled Asthma in the Phase 3 NAV-IGATOR Study. Adv Ther. 2023;40(11):4957-71. doi: 10.1007/s12325-023-02659-v.
- 223. Menzies-Gow A, Corren J, Bourdin A, et al. Efficacy and safety of tezepelumab in adults and adolescents with severe, uncontrolled asthma: results from the phase 3 NAVIGATOR study (Abstract L46). J Allergy Clin Immunol. 2021;147(2):AB249.
- 224. Liu S, Verma M, Michalec L, Liu W, Sripada A, Rollins D, et al. Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma: The role of thymic stromal lymphopoietin. J Allergy Clin Immunol. 2018;141(1):257-68.e6. doi: 10.1016/j.jaci.2017.03.032.

Sreenivasulu Reddy Boreddy¹, Christina Mary Mariaselvam¹, Benita Nancy Reni Micheal¹, Kommoju Vallayyachari¹, Sree Nethra Bulusu¹, Molly Mary Thabah¹, Mahesh Padukudru Anand², Thirumurthy Madhavan³, Vir Singh Negi¹

Functional characterization of complete and immunodominant epitopes of a novel pollen allergen from *Parthenium hysterophorus*

- ¹Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
- ²Department of Respiratory Medicine, JSS Medical College, JSSAHER, Sri Shivarathreeshwara Nagar, Mysore, Karnataka, India
- ³Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur Tamilnadu, India

KEY WORDS

Parthenium hysterophorus; allergic rhinitis; bronchial asthma; Skin Prick Test; basophil activation test.

Corresponding author

Vir Singh Negi
Department of Clinical Immunology
Jawaharlal Institute of Postgraduate Medical Education
and Research (JIPMER)
Dhanvantari Nagar
Puducherry - 605006 India
ORCID: 0000-0003-1518-6031
E-mail: vsnegi22@yahoo.co.in

Doi

10.23822/EurAnnACI.1764-1489.355

IMPACT STATEMENT

The allergenic epitopes deduced from 40 kDa pectin methylesterase allergenic protein of P. hysterophorus was found to induce prompt phenotypic responses by SPT and cellular immune responses comparable with that of the 40kDa allergenic protein and crude pollen extract.

Summary

Background. Parthenium hysterophorus pollen induces chronic clinical conditions such as allergic rhinitis and bronchial asthma. Among the plethora of proteins in the pollens, only few were reported to induce allergy. Currently sensitization to P. hysterophorus pollen allergen is diagnosed by skin prick test (SPT) using the entire pollen extract instead of using the specific allergen. Methods. In P. hysterophorus sensitized patients, SPT was done using the crude pollen extract, 40kDa allergenic pollen protein and two commercially synthesized allergen epitopes (17 and 24) of P. hysterophorus. Dot-blot of allergen epitopes was done using P. hysterophorus sensitized sera. Crude pollen extract (1, 1.25, 2.5, 5 and 10µg/mL), 40kDa allergenic protein (3µg/mL), and allergen epitopes (3µg/mL) were used to perform Basophil Activation Test (BAT). **Results.** Crude pollen extract at 2.5, 5, 10 µg/mL and 40kDa allergenic protein at 3 µg/mL concentrations induced wheal and flare reaction by around 15 minutes, whereas commercially synthesized allergen epitopes at 3 µg/mL induced wheal and flare reactions in <10 minutes. Allergen epitopes (3µg/mL) revealed strong reactivity with sensitized patient's IgE in dot-blot analysis. Basophil activation Test using crude pollen extract (2.5, 5, 10 µg/mL), 40 kDa allergenic protein (3 µg/mL), and allergenic epitopes (3 µg/mL) indicated significant basophil activation (as measured by CD63 expression) in sensitized patients. Conclusions. The 40 kDa allergenic protein and its allergenic epitopes (17 & 24) induced phenotypic and cellular immune responses in P. hysterophorus sensitized individuals. The tested allergenic epitopes (17 and 24) induced faster wheal and flare reactions in comparison with the crude extract and the 40kDa allergenic protein. The novel 40kDa allergenic protein and its allergen epitopes identified here may be useful for the development of component-resolved diagnosis (CRD) while also serving as a potential therapeutic lead for desensitization treatment for P. hysterophorus pollen induced allergy.

Introduction

Allergy is one of the leading illness, affecting more than 20% of the Indian population (1). Allergic rhinitis and asthma are the common and serious manifestations of allergy, causing considerable distress and burden by being chronic in nature, with remissions and relapses in the affected population but are rarely fatal (2). In the absence of specific treatment, palliative measures using epinephrine, antihistamines, and corticosteroids for symptom relief are usually offered to the patients during clinical exacerbations of allergy (3).

As a diagnostic procedure for allergies, skin prick test (SPT) is commonly used to confirm allergic sensitization to established allergens. Although, SPT is minimally invasive, economical, and provides immediate results (4, 5) some patients might develop anaphylactic reactions (6). The crude allergenic extracts used for SPT can lead to cross reactivity between related allergens. Besides, crude allergic extracts are heterogenous and contain undefined nonallergenic materials and contaminants (7). Batch to batch and manufacturer associated variations in the major and minor components of the allergens in the extracts used for SPT affect the sensitivity and specificity of the test. Variable responses are observed in patients based on their sensitization to different determinants, making precise standardization of methods essential for diagnosing clinical allergies (8, 9). Therefore, the use of well-standardized allergens is recommended for diagnosis. Improved standardization of allergens using allergen epitopes helps to discriminate between cross reactivity, enhancing the specificity of the diagnostic assay and to assess disease severity (10). In 2001, a project funded by the European Union, CREATE, introduced the idea of standardizing and optimizing allergenic extracts based on the content of the major allergens (11). The development of recombinant allergens has also contributed to the standardization of allergenic extracts for use in diagnosis (4). In India, the data on the specific allergens from the source is very sparse and dose dependent allergenic extracts are not commonly used in clinical practice for allergy diagnosis. In India, allergic respiratory disorders are common and pollen aeroallergens from various plant sources were implicated as etiologies (12). P. hysterophorus, a ubiquitous and invasive weed of global significance, is abundant in more than 30 countries. Though P. hysterophorus is not included in the panel of respiratory allergens routinely tested in Europe, it has been identified as the leading cause of allergic rhinitis and asthma in India, including Puducherry over the last three decades, reaching epidemic proportion (13). Earlier studies conducted on *P. hystero*phorus did not provide information on allergen concentration used for SPT and cell-specific immune response by basophil activation test (BAT). Therefore, in this study, P. hysterophorus pollen crude extract, 40kDa allergenic protein and its in-silico predicted allergen epitopes were subjected to in-vitro BAT and SPT to obtain quantitative and qualitative conclusions on allergen specific effector cell responses.

Materials and methods

Study subjects

Patients with allergic rhinitis fulfilling Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines (14) and allergic asthma fulfilling Global initiative for Asthma (GINA) guidelines (15) and who tested positive to *P. hysterophorus* allergens by SPT, were enrolled from the Clinical Immunology, Otorhinolaryngology and Pulmonary Medicine outpatient clinics from 2014 to 2018 between May and September. A panel of 26 allergens (16 plant pollens, 3 fungal, 4 insects, 3 animal dander) were tested by skin prick test (SPT) as a part of routine diagnosis (supplementary table I) to identify the allergen specific sensitization in the patients. The patients who developed wheal and flare reaction (> 3 mm diameter) within 15 minutes after SPT were considered to be sensitized to the particular allergen. Histamine dihydrochloride (Sigma-Aldrich, USA) at 5 mg/mL and sterile PBS (Sigma-Aldrich, USA) were used as positive and negative controls respectively.

Patients with chronic obstructive pulmonary disease (COPD), autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), dermatomyositis, metabolic diseases such as diabetes mellitus, dyslipidemia, thyroid dysfunction, hypertension, diseases of the skin, such as psoriasis, vitiligo and those on long term immunosuppression drugs were excluded from the study. Healthy controls were individuals without any family history of chronic infections, allergic or autoimmune diseases.

After the initial screening, patients who tested allergic to *P. hysterophorus* by SPT were included after obtaining a written informed consent. Ten milliliters of peripheral venous blood were collected (5 mL in plain sterile vials, 5 mL in heparinized tubes). Heparinized blood sample was used for BAT. Serum was separated from the clotted blood and stored at -80 °C until further use. The study was approved by JIPMER Ethics Committee (Human Studies), Protocol No. JIP/IEC/2014/10/482 dated January 30, 2015. As a negative control for all the functional assays, heparinized blood sample and serum obtained from healthy individuals who tested negative by SPT to all the 26 allergens was used.

The total IgE level in the serum of *P. hysterophorus* sensitized patient was measured using the commercial IgE kit (N Latex IgE mono kit, Siemens, Germany) by Nephelometry (BN ProSpec® System, Siemens, Germany). Subjects with ≥ 100 IU/mL of total IgE were considered as "sensitized" while those tested < 100 IU/mL were considered as "unsensitized". The serum and heparinized blood samples thus obtained from SPT-sensitized patients with total IgE ≥ 100 IU/mL were subjected to functional analysis.

Characterization of specific allergenic protein from pollens of P. hysterophorus

The inflorescences from the P. hysterophorus were collected from various locations in Puducherry between 2014-2018. From the inflorescence, pollen collection and extraction of pollen proteins were performed following the published protocol (16). The pollen protein extract was lyophilized (ModulyoD Freeze Dryer, Thermo Scientific, USA) and stored at -80 °C until further use. When needed, the lyophilized pollen protein extract was reconstituted in sterile Milli-Q water, and its protein concentration was measured using a UV-visible spectrophotometer (Picodrop, PICOPET 01, UK). The proteins in the pollen extract were resolved on 12.5% SDS-PAGE and transferred onto a nitrocellulose membrane (Sigma Aldrich, USA) by semi-dry blot method (Trans-Blot SD Semi Dry Transfer Cell, Bio-Rad, USA). The unbound sites in the membrane were blocked using 5% bovine serum albumin (BSA). Following three washes using Phosphate Buffered Saline with Tween 20 (PBST), the membrane was incubated overnight at 4 °C, with the diluted serum (1:500) containing IgE from the sensitized patient. After washing the membrane was incubated at 37 °C for 3 hours with diluted anti-human IgE antibody HRP conjugate (1:500) (Abcam, USA) (17, 18). The membrane was incubated with Clarity Western peroxide reagent and Clarity Western Luminol/Enhancer reagent (Clarity Western ECL blotting substrate, Bio-Rad, USA). Images were acquired using the Chemi-Doc™ XRS+ system (Bio-Rad, USA).

After identifying the reactive allergenic pollen protein by immunoblotting, the protein was isolated from the SDS-PAGE gel by excising and protein stripping by cold acetone method (19). Protein precipitate was treated with cold acetone (1:4 v/v) and sample was incubated at -20 °C for 1 hour and centrifuged for 10 min at 10,000 g. Precipitated protein free of SDS was then dissolved in 500 µl of 1x PBS by vortexing and was subjected to ultra-performance liquid chromatography (UPLC) using the Acquity Ultra Performance LC system (Waters, USA) in the reversed phase mode and protein was separated on the Acquity UPLC BEH300 C4 column (Waters, USA). The concentration of the purified protein was quantified (Picodrop, PICOPET 01, UK) and was stored at 4 °C for further analysis. The amino acid sequence of the identified protein was analyzed using commercial service (Sandor proteomics, Hyderabad, India).

Allergen epitope identification

Immune epitope database (http://tools.immuneepitope.org/bcell/) and analysis resource tools were used to predict epitopes from the 40 kDa allergenic protein (20). Various immune epitope database tools were used to analyze peptide parameters such as solubility (Parker Hydrophilicity Prediction), flexibility (Karplus and Schulz flexibility scale), accessibility (Emini surface accessibility scale), Beta-turns (Chou and Fasman Beta-Turn prediction), antigenicity (Kolaskar and Tongaonkar antigenicity scale),

and linear epitopes (Bepipred 1.0 and 2.0) (20-22). NetSurfP 2.0 server was used to predict the surface accessibility, and secondary structure of peptides (23). The peptides that exhibited high flexibility, hydrophilicity, antigenicity, and surface accessibility were selected as candidate molecules for further analysis. The total net charge of peptides and their binding potential (Boman index) was also calculated using the antimicrobial peptide database (https://aps.unmc.edu/prediction) (24). Based on the data derived from Immune Epitope Database tools, NetSurfP 2.0 server, and antimicrobial peptide database, two peptides (17 and 24) were selected.

In vitro peptide synthesis

The selected peptides were synthesized using a commercially available service ('S' BioChem company, Kerala, India) and the peptides were synthesized by Solid Phase Peptide Synthesis (SPPS) method using Specific Automated Peptide Synthesizer Autopep-001A (CS Bio, California). Briefly, 4-(2',4'-Dimethoxyphenyl-Fmoc-aminomethyl) phenoxy resin 100-200 mesh was used to provide a C-terminus free carboxyl group to the peptide. Deprotection of peptide was performed using 20% piperidine in dimethylformamide. The resin was removed by filtration and washed with hexane, dimethylformamide, chloroform, and methanol, and dried. The synthesized peptide was isolated from the solution using excess peroxide free pure cold diethyl ether (25, 26). After isolation, crude peptide was dissolved in 5% acetonitrile solution and purified using reverse phase HPLC on a RPC18 column (M/s Shimadzu Corporation, Japan). The molecular mass of the synthesized peptide was determined using ESI-MS (Waters' USA).

Dot blot analysis

The commercially synthesized peptides (allergen epitopes) were diluted from the stock to a final concentration of 3 µg/µL in sterile PBS and 10 µL of peptides were separately blotted onto the 0.2 µm nitrocellulose membranes (Sigma Aldrich, USA). The membranes were blocked using 5% BSA and then incubated at 4 °C for 2 hours with 10 mL of diluted serum (1:500) containing IgE from P. hysterophorus sensitized patient and then washed twice using 1x Tris-buffered saline with 0.1% Tween 20 detergent (TBST). The membranes were then incubated with anti-human IgE antibody (Abcam, USA) HRP conjugate (1:500) at 37 °C for 3 hours (27). Post washing with PBST, clarity western peroxide reagent and clarity western Luminol/Enhancer reagent was added to the membrane (Clarity Western ECL blotting substrate, Bio-Rad, USA) and images were acquired using ChemiDoc™ XRS+ system (Bio-Rad, USA). As a negative control, serum from an apparently healthy person, non-reactive by SPT was used.

Evaluation of reactivity of pollen allergenic extract, 40kDa allergenic protein and in vitro synthesized peptides using SPT To optimize the diagnostic dose for SPT, the crude pollen extract $(1, 1.25, 2.5, 5, 10 \, \mu g/mL)$, $40 \, kDa$ allergenic protein and aller-

gen epitopes at 3 μ g/ml were used for SPT. The time taken to develop wheal and flare reactions for the respective test preparation was recorded and measured respectively and compared with the positive control (5 mg/mL Histamine dihydrochloride, Sigma Aldrich, USA).

Basophil degranulation test

Basophil degranulation assay was carried out using the Fast Immune™ CD63/CD123/Anti-HLA-DR reagent kit (BD Biosciences, California, USA). Variable concentrations of crude pollen extract, 40 kDa allergenic protein, and commercially synthesized peptides were used for the assay. In this exploratory study, we used 1, 1.25, 2.5, 5 and 10 µg/mL of crude pollen extract to perform SPT. A crude pollen extract of 2.5, 5 and 10 µg/mL was found to induce the wheal and flare reactions in sensitized individuals. Based on this observation, the minimal concentration of 3 µg/mL of 40 kDa protein and 3 μg/mL of allergen epitopes (17 and 24) was considered to be sufficient for SPT and basophil activation test. Heparinized blood samples were collected from patients tested positive by SPT to P. hysterophorus and healthy donors. Briefly, 100 µL of blood was mixed with 20 μL of basophil stimulation buffer 20 μL of crude pollen extract (1, 1.25, 2.5, 5 and 10 µg/mL), 40 kDa allergenic protein (3 μg/mL) and allergen epitopes (3 μg/mL) was added separately to the above tube and incubated at 37 °C in a water bath for 15 min. N-Formylmethionyl-leucyl-phenylalanine (fMLP) and basophil stimulation buffer (BSB) were used as positive and negative controls respectively. Degranulation was stopped by chilling the tubes with the addition of 1 mL of ice-cold PBS with 10 mmol/L EDTA on ice and were centrifuged for 5 min. The CD63 FITC/ CD123 PE/Anti-HLA-DR PerCP antibody cocktail (20 µL) was added to each tube and incubated in the dark on ice for 20 min. Samples were then lysed using 1X BD FACS™ lysing solution at room temperature for 15 min and centrifuged. Supernatants were analyzed by BD FACS™ flow cytometer with a 488-nm laser to detect the CD63+ basophils. Data was acquired with a threshold to eliminate most of CD123- cells and at least 500 CD123+ cells were acquired per sample. Basophils were identified as low side scatter (SSC), CD123+ and HLA-DR- cells. The quantitative determination of activated basophils was measured on CD63 FITC.

Statistical analysis

Descriptive variables are represented as mean and standard deviation (SD) or the median with interquartile range (IQR). Kruskal-Wallis test was used to compare the difference between the percentages of activated basophils in patients. A P-value < 0.05 was considered statistically significant.

Results

A total of 484 patients were screened in this study. Among them, only 18 patients (mean age 37.9 ± 13.5 years) tested reactive to *P*.

hysterophorous allergens by SPT. Of these 18 patients, five (mean age 39.6 \pm 10.5 years) had a history of direct exposure by virtue of their profession. In addition to *P. hysterophorus*, these five patients were also tested positive to *Ambrosia artemisiifolia* (short ragweed), *Casuarina equisetifolia*, and *Dermatophagoides pteronyssinus* or *Dermatophagoides farinae* aeroallergens and had elevated total serum IgE levels (> 100 IU/mL). Five individuals (mean age 32.8 \pm 1.6 years) tested negative by SPT to all the 26 allergens, were recruited as healthy controls. The serum from the healthy control was used as negative control for all the downstream assays.

Prediction and in vitro synthesis of potential allergen epitopes from 40kDa allergenic protein of P. hysterophorus

SDS-PAGE and immunoblotting analysis of *P. hysterophorus* pollen extract using sensitized sera revealed binding of IgE to a 40 kDa pollen protein. The 40 kDa protein was further characterized by amino acid sequencing as pectin methylesterase (data not shown). Using bioinformatic tools, a total of 48 peptide sequences from 40 kDa pectin methylesterase were identified. The peptides that exhibited high flexibility, hydrophilicity, antigenicity, and surface accessibility were selected. Peptides 17 and 24 fulfilled the required physicochemical features such as length, molecular weight, and protein binding potential to be considered as potential allergen epitopes (supplementary figures 3-5).

The predicted allergen epitopes were commercially synthesized. The matrix assisted laser desorption ionization-time of flight (MALDI-TOF) analysis of peptide-17 showed the ESI mass spectrum of 2.78e8 detected four charge states of the peptide: m/z 965.25 [M+2H]2+, m/z 482.98 [M+4H]4+, m/z 796.00 [M+5H]5+, m/z 663.50 [M+6H]6+ and the molecular mass of the peptide was found to be 1929.18 daltons (supplementary figure 6A). The HPLC analysis of the peptide showed a single sharp peak with a retention time of 7.626 min indicating a peptide with > 99% purity (**supplementary figure 6B**). The MAL-DI-TOF analysis of peptide-24 revealed the ESI mass spectrum of 5.72e7 detected four charge states of the peptide: m/z 1330.25 $[M+2H]_{2+}$, m/z 665.70 $[M+4H]_{4+}$, m/z 796.00 $[M+5H]_{5+}$, m/z 663.50 [M+6H]6+ verifying a molecular mass of peptide to be 2660.12 daltons (supplementary figure 7A). The HPLC analysis of peptide-24 showed a single sharp peak with a retention time of 10.770 min representing peptide with > 99% purity (supplementary figure 7B).

Evaluation of the reactivity of the synthesized peptides with specific IgE

The *in vitro* synthesized peptides (17 and 24) were diluted from the stock to a final concentration of $3\mu g/\mu L$ and $10\mu L$ of peptides (17 and 24) blotted on nitrocellulose membranes. The *P. hystero-phorus* sensitized patient's sera exhibited strong IgE (1:500) reactivity with the peptides (17 and 24) by dot-blot analysis, whereas no reaction was observed with the negative control (healthy individ-

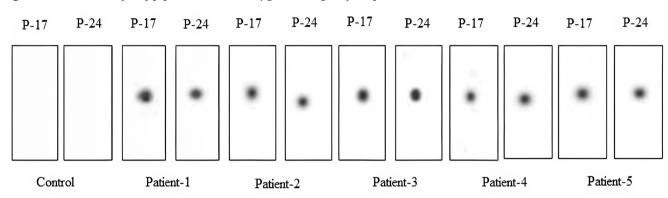
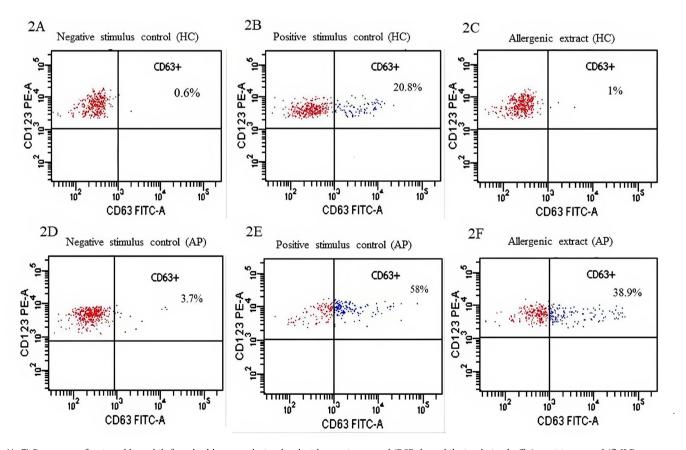



Figure 1 - Dot-blot analysis of peptide-17 and 24 (3 µg/mL) using P. hysterophorus sensitized sera (1:500).

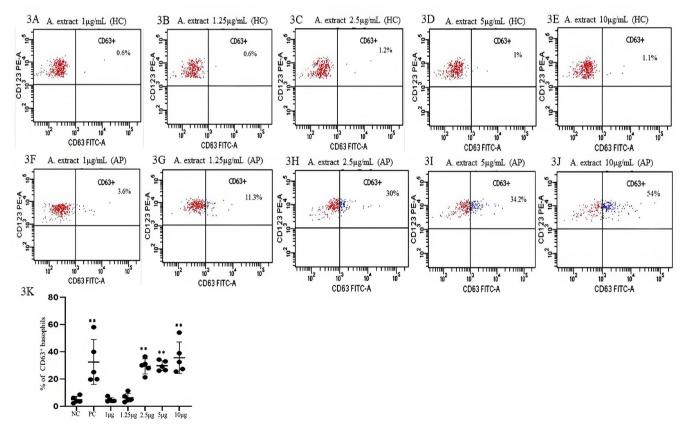
Control: Dot-blot analysis of peptide-17 (P-17) and peptide-24 (P-24) using a healthy control serum. Patient's-1-5: Dot-blot analysis of peptide-17 and 24 using *P. hysterophorus* sensitized patient sera of allergic rhinitis and bronchial asthma patients.

Figure 2 - Effect of negative and positive stimulus controls and test (crude allergenic extract) on basophils of healthy control and allergic patients.

(A-C) Percentage of activated basophils from healthy control stimulated with negative control (BSB: basophil stimulation buffer), positive control (fMLP: N-Formylmethionine-leucyl-phenylalanine), and test (allergenic extract: $2.5 \mu g/mL$); (D-F) Percentage of activated basophils from allergic patient stimulated with negative control (BSB), positive control (fMLP) and test (allergenic extract: $2.5 \mu g/mL$).

ual serum) which clearly indicates that peptides reacted with specific IgE of sensitized patients and the details are given in **figure 1**.

SPT reactivity of pollen crude extract, 40kDa allergenic protein and allergen epitopes


SPT performed in sensitized patients (n = 5), using different concentrations of (1, 1.25, 2.5, 5 and 10 $\mu g/mL$) antigenic extract, 40 kDa allergenic protein (3 $\mu g/mL$) and allergen epitopes 17 and 24 (3 $\mu g/mL$) showed that tested patients exhibited significant reactivity with the crude antigenic extract at concentration ranging from 2.5, 5 and 10 $\mu g/mL$. Sensitized patients also exhibited strong reactivity to 40 kDa allergenic protein and commercially synthesized allergen epitopes (3 $\mu g/mL$). In sensitized patients, strong wheal and flare reactions were observed within 10 minutes with the allergen epitopes, while wheal and flare reactions were observed after 15 minutes using the crude pollen extract and 40 kDa protein. The results of SPT carried out using crude antigenic

extract, 40kDa allergenic protein and allergenic epitopes and their wheal and flare reactions are given in **supplementary table II**.

Basophil activation test

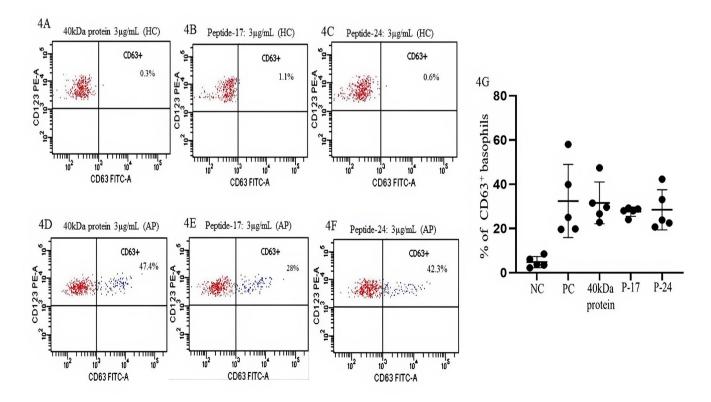
The gating strategy for basophils is described in **supplementary figures 1** and **2**. Effect of negative and positive stimulus controls and 2.5 μg/mL crude pollen extract on basophils of healthy control and allergic patient was tested. In sensitized patients a higher percentage of basophil activation (CD63*/CD123*/HLA·DR·) was seen using positive control compared to healthy individuals (58% *vs* 20.8%) and with crude pollen extract at 2.5μg/mL concentration, 38.9% basophil activation was noted in sensitized patients compared to 1% in healthy controls (**figure 2A-F**). On testing different concentrations of crude pollen extract in controls no activation of basophils were noted (**figure 3 A-E**) while a dose dependent rise in the basophil activation was observed with 2.5 (30%, p = 0.05), 5 (34.2%, p = 0.05) and 10μg/μL (54%, p

Figure 3 - Effect of 1, 1.25, 2.5, 5 and 10 µg/mL of P. hysterophorus pollen allergenic extract on basophils of healthy control and allergic patient.

(A-E) Percentage of activated basophils of healthy control stimulated with 1, 1.25, 2.5, 5 and 10 µg/µL of allergenic extract; (F-J) Percentage of activated basophils of allergic patient stimulated with 1, 1.25, 2.5, 5 and 10 µg/µL of allergenic extract; (K) The percentage of activated basophils between negative, positive controls and different allergenic extract concentrations (1, 1.25, 2.5, 5 and 10 µg/mL) were and tested using Kruskal-Wallis test. p < 0.05 is considered significant.

= 0.05) concentrations in patients (**figure 3 F-J**). Likewise, the observed basophil activation frequency with 40kDa allergenic protein, allergenic epitopes (17&24) at $3\mu g/\mu L$ each was 47.4% (p = 0.05), 28% (p = 0.05) and 42.3% (p = 0.05) respectively in patients compared to controls (**figure 4**).

Discussion and conclusions


In this study, we assessed the immune response induced by the 40 kDa allergenic protein of *P. hysterophorus* pollen and two immunodominant allergenic epitopes identified from the 40 kDa allergen in allergic rhinitis and asthma patients.

Immunoblotting analysis of *P. hysterophorus* pollen protein extract using sensitized sera revealed 40 kDa protein to be allergenic and in silico studies revealed that it is a member of the pectin methylesterase family (data not shown). Pectin methylesterase family members from pollen and other sources have been reported to induce allergy (28, 29). Salamanca *et al.* reported a 37.4 kDa

Ole e 11 as a pectin methylesterase from olive tree, had 57% and 54% similarity with pectin methylesterase of *Arabidopsis thaliana* and Sal k 1 of *Salsola kali* (Russian thistle) pollens respectively (28). Barderas *et al.* reported a 43 kDa pectin methylesterase from Russian thistle to be highly allergenic with significant sensitization rates in the Spanish population (30). Pectin methylesterase of Japanese hop pollen, has 23.2-50.2% of sequence similarities with Ole e 11, and Sal k 1 (31). These data highlight the importance of cross-reactive amino acids in pectin methylesterase family members and their impact in susceptible individuals which necessitates the characterization of clinically important allergen epitopes for accurate allergy diagnosis.

Defensins are antimicrobial glycoproteins, that plays a critical role in the plant immune system and have been reported to induce allergy (32, 33). A diverse number of defensins were reported in the members of the Asteraceae family members, especially from the *Artemisia sp.*, *Ambrosia* sp., and *P. hysterophorus* (33). Par h 1 a defensin-polyproline-linked protein from *P. hysterophorus* has

Figure 4 - Effect of 3 µg/mL of 40 kDa protein, peptide-17 and 24 on basophils of healthy control and allergic patient.

(A-C) Percentage of activated basophils from healthy control stimulated with 3 μ g/ μ L of 40 kDa protein and peptides (17 and 24); (**D-F**) Percentage of activated basophils from allergic patient stimulated with 3 μ g/ μ L of 40 kDa protein and allergen epitopes (17 and 24); (**G**) The percentage of activated basophils between negative, positive controls and 40kDa allergenic protein and allergen epitopes (17 and 24) were tested using Kruskal-Wallis test. p < 0.05 is considered significant.

high sequence similarity with Amb a 4 and Art v 1, defensins of Ambrosia artemisiifolia and Artemisia vulgaris respectively (33). In P. hysterophorus Gupta et al. identified 28, 31, and 45 kDa proteins of which only 31 kDa Par h I was allergenic based on their reactivity to sera from patients with allergic rhinitis and bronchial asthma (17). Our findings are different to the above studies, and it could be due to differences in the geographical regions and the climate/environment induced changes in pollen protein composition. Pollen protein component variations collected from variable geographic regions in India and differences in their ability to cause disease severity has already been reported (34-36). Although all the P. hysterophorus sensitized patients were polysensitized to other aeroallergens, resource limitations precluded us from evaluating the cross-reactivity of P. hysterophorus specific pectin methylesterase with the other allergens. Nevertheless, specific 40 kDa allergenic protein characterized in this study, may be useful for in-vitro and in vivo diagnosis of P. hysterophorus induced allergy in future.

Immune epitope prediction database tools were used to predict the specific IgE binding epitopes from the 40 kDa protein. A total of 48 peptides were predicted out of which only two peptides (17 and 24), possessed the required criteria such as length, molecular weight, and protein binding potential. The selected peptides were also shown to form the alpha-helical structure. Hence, these two peptides were used for downstream SPT and cellular assays.

Using immune epitope database tools, Carrera et al. had identified the B-cell epitopes from the major fish allergens beta parvalbumins (37). Using BepiPred 1.0, Chen et al. reported seven B-cell epitopes from the major cockroach allergens Per a 6 of *Peri*planeta americana and Bla g 6 of Blattella germanica (38). Similarly, three B-cell IgE binding epitopes were identified from the osmotin protein of tobacco (*Nicotiana tabacum*). The B-cell epitopes of osmotin displayed higher reactivity with allergen-specific IgE by dot-blot analysis (39). Molecular analysis of sesame allergen, 14 kDa β-globulin revealed two IgE binding epitopes, which exhibited strong reactivity in dot-blot analysis using sensitized patient sera (40). T and B cell epitopes of pectin methylesterase from Russian thistle were predicted using immunoinformatic tools. Molecular docking studies of Sal k 1 with MHC-II identified Sal k 1 as a promising molecule for allergen specific immunotherapy as it revealed strong and stable interactions (41). From the major Sal k 1 allergen, two isoforms Sal k 4.03 and Sal k 4.02 were identified using immunoinformatic tools. IgE binding assay of these isoforms revealed that the Sal k 4.03 bound better to specific IgE than Sal k 4.02, indicating a hypoallergenic nature useful to devise desensitization therapy (42).

In our study, immunoblotting assays confirmed that the sensitized patient's IgE specifically reacted with the 40 kDa allergen. Dotblot assay using allergen epitopes (17 and 24) displayed stronger binding with the IgE of *P. hysterophorus* sensitized individu-

als. Our study results are in parallel with the above reports of IgE binding epitope identification and characterization.

In our study, varied concentrations of *P. hysterophorus* pollen extract (1, 1.25, 2.5, 5, and 10 µg/mL) induced strong wheal and flare reactions in sensitized patients by SPT. In contrast, a 40 kDa allergenic protein and allergenic epitopes elicited skin reactions at a standard concentration of 3 µg/mL. However, the time to develop wheal and flare reactions was slightly different. While SPT was performed using allergen epitopes (17 and 24), we observed development of wheal and flare reaction within 10 minutes. However, a delay in the development of responses by 5 minutes was observed when the crude pollen extract and purified allergenic 40 kDa protein was used. Peeters et al. studied the effect of peanut-specific purified allergens (Ara h 1, Ara h 2, Ara h 3, and Ara h 6) in eliciting skin reactions by SPT. It was shown that the sensitized patients with severe symptoms developed significant reactions with the low concentrations (0.1 µg/mL) of Ara h 2 and Ara h 6 and with higher concentrations of Ara h 1 and Ara h 3 (100 µg/mL) (43). In our study, we found that 40 kDa allergenic protein and allergen epitopes induced the visible skin reaction at 3 µg/mL, a slightly higher concentration. The salient finding of our study is the faster immune response elicited by the allergen epitopes compared to the 40 kDa protein. This could be due to instantaneous recognition of the allergenic epitopes by high affinity allergen-specific IgE in the sensitized patients and activation of allergen-specific mast cells (44). Ebo et al. reported that purified Mal d 1 (a major apple allergen) could activate basophils even at 1 µg/ml (45). Likewise, a marked increase in the percentage of CD63 expressing basophils was reported using 1µg/mL of wasp recombinant allergens (Ves v 1, Ves v 2, Ves v 3, and Ves v 5) (46). In our study, the allergenic crude extract at lower concentrations failed to induce basophil activation, while at higher concentrations, a dose-dependent increase in the activation of basophils was noted. Compared to the crude extract, a significantly higher percentage of basophils were activated by 40 kDa allergenic protein and allergenic epitopes (17 and 24) in sensitized individuals. Although the above studies have reported basophil activation with lower concentrations, we did not carry out the basophil activation assays using variable concentrations which is a limitation of our study. Resource limitations and lack of data from the published literature precluded us from using variable concentrations of 40 kDa allergenic protein and allergen epitopes (17 and 24) of P. hysterophorus to analyze their use in in vivo and in vitro assays. Therefore, we used a standard concentration of 3 µg/mL of 40 kDa allergenic protein and allergenic epitopes. However, 3 µg/mL of 40 kDa allergenic protein and allergenic epitopes significantly induced phenotypic and cellular immune responses. Future studies would help to optimize the minimum concentration of these molecules required for activating basophils as well as diagnosis of *P. hysterophorus* pollen allergy.

Although there are reports of other protein components in the *P. hysterophorus* pollen being allergenic from various geographi-

cal locations in India (17, 47), we for the first-time report that a 40 kDa Pectin methylesterase protein induced allergic responses among patients from Puducherry. Both the complete allergen and the predicted epitopes were tested to elicit cellular and phenotypic responses in sensitized individuals indicating its enhanced specificity. As these predicted allergen epitopes are specific and unique for the allergen, use of them for diagnosis would negate the cross reactivity with the similar allergens to a greater extent. However, we could not perform further in silico and in vitro studies to assess its cross reactivity with the other allergens and test its use to diagnose P. hysterophorus pollen sensitization. Also assessing cellular and phenotypic responses by using various concentrations would have helped us to arrive at the effective concentrations to be used for the effector functional studies. A major limitation of this study is its smaller sample size and hence these data should be validated in a larger cohort to confirm its clinical utility. Likewise, provocation studies and chemical modification of the peptides in future, might help to identify and develop allergen epitopes with poor avidity to IgE, which could be tested for its use in desensitization therapy to treat the sensitized patients thereby reducing their allergic symptoms, anaphylaxis related complications, and associated costs to the individual and society in future. In summary, the 40 kDa allergenic protein and its allergenic epitopes (17 and 24) were demonstrated to induce phenotypic and cellular immune responses in P. hysterophorus sensitized individuals. The allergenic epitopes identified here may also be tested in a larger cohort for validating its use in the rapid diagnosis of P. hysterophorus pollen induced allergy.

Fundings

This study was supported by JIPMER intramural research fund (JIP/Res/Intra-PhD/01/2014, JIP/Res/Intra-PhD/phase 2/grant 3/2016-17, JIP/Dean (Res)/Intramural/CIR (2)/2016).

Contributions

VSN, SRB, MPA, CMM: conceptualization. VSN: resources. SRB: investigation. SRB, VSN, MMT: data curation. BNRM, KV, SNB: data curation, formal analysis. SRB, TM: formal analysis. CMM, MMT, TM, MPA, VSN: writing – review & editing. SRB, CMM: writing – original draft. VSN: funding acquisition.

Conflict of interests

The authors declare that they have no conflict of interests.

References

1. Krishna MT, Mahesh PA, Vedanthan PK, Mehta V, Moitra S, Christopher DJ. The burden of allergic diseases in the Indian subconti-

- nent: barriers and challenges. Lancet Glob Health. 2020;8(4):e478-9. doi: 10.1016/S2214-109X(20)30061-9.
- Kim H, Bouchard J, Renzi PM. The link between allergic rhinitis and asthma: a role for antileukotrienes? Can Respir J. 2008;15(2):91-8. doi: 10.1155/2008/416095.
- 3. Rowe BH, Edmonds ML, Spooner CH, Diner B, Camargo CA Jr. Corticosteroid therapy for acute asthma. Respir Med. 2004;98(4):275-84. doi: 10.1016/j.rmed.2003.11.016.
- Jeong KY, Hong CS, Lee JS, Park JW. Optimization of allergen standardization. Yonsei Med J. 2011;52(3):393-400. doi: 10.3349/ ymj.2011.52.3.393.
- Heinzerling L, Frew AJ, Bindslev-Jensen C, Bonini S, Bousquet J, Bresciani M, et al. Standard skin prick testing and sensitization to inhalant allergens across Europe--a survey from the GALEN network. Allergy. 2005;60(10):1287-300. doi: 10.1111/j.1398-9995.2005.00895.x.
- Lockey RF, Benedict LM, Turkeltaub PC, Bukantz SC. Fatalities from immunotherapy (IT) and skin testing (ST). J Allergy Clin Immunol. 1987;79(4):660-77. doi: 10.1016/s0091-6749(87)80164-1.
- 7. Valenta R, Karaulov A, Niederberger V, Zhernov Y, Elisyutina O, Campana R, et al. Allergen Extracts for In Vivo Diagnosis and Treatment of Allergy: Is There a Future? J Allergy Clin Immunol Pract. 2018;6(6):1845-55.e2. doi: 10.1016/j.jaip.2018.08.032.
- 8. Dreborg S, Einarsson R. The major allergen content of allergenic preparations reflect their biological activity. Allergy. 1992;47(4 Pt 2):418-23. doi: 10.1111/j.1398-9995.1992.tb02082.x.
- van Ree R. Indoor allergens: relevance of major allergen measurements and standardization. J Allergy Clin Immunol. 2007;119(2):270-7; quiz 278-9. doi: 10.1016/j.jaci.2006.10.033.
- Scheurer S. Improvement of the diagnosis of allergy by using purified allergens. Clin Exp Allergy. 2006;36(12):1483-6. doi: 10.1111/j.1365-2222.2006.02597.x.
- 11. van Ree R, CREATE Partnership. The CREATE project: EU support for the improvement of allergen standardization in Europe. Allergy. 2004;59(6):571-4. doi: 10.1111/j.1398-9995.2004.00499.x.
- Singh AB, Shahi S. Aeroallergens in clinical practice of allergy in India- ARIA Asia Pacific Workshop report. Asian Pac J Allergy Immunol. 2008;26(4):245-56.
- 13. Lakshmi C, Srinivas C. Parthenium the terminator: An update. Indian Dermatol Online J. 2012;3(2):89-100. doi: 10.4103/2229-5178.96698.
- 14. Bousquet J, Khaltaev N, Cruz AA, Denburg J, Fokkens WJ, Togias A, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy. 2008;63 Suppl 86:8-160. doi: 10.1111/j.1398-9995.2007.01620.x.
- Reddel HK, Bacharier LB, Bateman ED, Brightling CE, Brusselle GG, Buhl R, et al. Global Initiative for Asthma Strategy 2021: Executive Summary and Rationale for Key Changes. Am J Respir Crit Care Med. 2022;205(1):17-35. doi: 10.1164/rccm.202109-2205PP.
- Singh AB, Dahiya P. Antigenic and allergenic properties of Amaranthus Spinosus pollen--a commonly growing weed in India. Ann Agric Environ Med. 2002;9(2):147-51.
- 17. Gupta N, Martin BM, Metcalfe DD, Rao PVS. Identification of a novel hydroxyproline-rich glycoprotein as the major allergen in Parthenium pollen. J Allergy Clin Immunol. 1996;98(5):903-12. doi: 10.1016/s0091-6749(96)80006-6.
- Ghosh D, Mueller GA, Schramm G, Edwards LL, Petersen A, London RE, et al. Primary Identification, Biochemical Characterization, and Immunologic Properties of the Allergenic Pollen Cyclo-

- philin Cat r 1. J Biol Chem. 2014;289(31):21374-85. doi: 10.1074/jbc.M114.559971.
- 19. Niu L, Zhang H, Wu Z, Wang Y, Liu H, Wu X, et al. Modified TCA/ acetone precipitation of plant proteins for proteomic analysis. PLoS One. 2018;13(12):e0202238. doi: 10.1371/journal.pone.0202238.
- 20. Fleri W, Vaughan K, Salimi N, Vita R, Peters B, Sette A. The Immune Epitope Database: How Data Are Entered and Retrieved. J Immunol Res. 2017;2017:5974574. doi: 10.1155/2017/5974574.
- Dhanda SK, Mahajan S, Paul S, Yan Z, Kim H, Jespersen MC, et al. IEDB-AR: immune epitope database-analysis resource in 2019. Nucleic Acids Res. 2019;47(W1):W502-6. doi: 10.1093/nar/gkz452.
- 22. Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J, et al. Immune epitope database analysis resource. Nucleic Acids Res. 2012;40(Web Server issue):W525-30. doi:10.1093/nar/gks438.
- 23. Klausen MS, Jespersen MC, Nielsen H, Jensen KK, Jurtz VI, Sønderby CK, et al. NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning. Proteins. 2019;87(6):520-7. doi: 10.1002/prot.25674.
- Ravichandran G, Kumaresan V, Bhatt P, Arasu MV, Al-Dhabi NA, Arockiaraj J. A Cumulative Strategy to Predict and Characterize Antimicrobial Peptides (AMPs) from Protein Database. Int J Pept Res Ther. 2017;23(2):281-90.
- 25. Selvam R, Sudha E, Rajkumar PR, Subashchandran KP. Synthesis of biologically important neutral amylo-β peptide by using improved Fmoc solid-phase peptide synthetic strategy. J Chem Biol. 2015;8(2):61-6. doi: 10.1007/s12154-015-0128-2.
- Selvam R, Subashchandran KP. Synthesis of Biologically Active Hydrophobic Peptide by Using Novel Polymer Support: Improved Fmoc Solid Phase Methodology. Int J Pept Res Ther. 2015;21(1):91-7.
- Pang SL, Ho KL, Waterman J, Rambo RP, Teh AH, Mathavan I, et al. Crystal structure and epitope analysis of house dust mite allergen Der f 21. Sci Rep. 2019;9(1):4933. doi: 10.1038/s41598-019-40879-x.
- 28. Salamanca G, Rodríguez R, Quiralte J, Moreno C, Pascual CY, Barber D, et al. Pectin methylesterases of pollen tissue, a major allergen in olive tree. FEBS J. 2010;277(13):2729-39. doi: 10.1111/j.1742-4658.2010.07689.x.
- 29. Palazzo P, Tuppo L, Giangrieco I, Bernardi ML, Rafaiani C, Crescenzo R, et al. Prevalence and peculiarities of IgE reactivity to kiwifruit pectin methylesterase and its inhibitor, Act d 7 and Act d 6, in subjects allergic to kiwifruit. Food Research International. 2013;53(1):24-30.
- 30. Barderas R, García-Sellés J, Salamanca G, Colás C, Barber D, Rodríguez R, et al. A pectin methylesterase as an allergenic marker for the sensitization to Russian thistle (Salsola kali) pollen. Clin Exp Allergy. 2007;37(7):1111-9. doi: 10.1111/j.1365-2222.2007.02744.x.
- 31. Jang ŚW, Jeong KY, Yuk JE, Lee J, Park KH, Park JW. Allergen Homologues, Pathogenesis-Related 1, Polygalacturonase, and Pectin Methyl Esterase from a Japanese Hop. Protein Pept Lett. 2021;28(4):362-71. doi: 10.2174/0929866527666200813201924.
- 32. Lay FT, Anderson MA. Defensins--components of the innate immune system in plants. Curr Protein Pept Sci. 2005;6(1):85-101. doi: 10.2174/1389203053027575.
- 33. Pablos I, Eichhorn S, Machado Y, Briza P, Neunkirchner A, Jahn-Schmid B, et al. Distinct epitope structures of defensin-like proteins linked to proline-rich regions give rise to differences in their allergenic activity. Allergy. 2018;73(2):431-41. doi: 10.1111/all.13298.
- 34. Emberlin J, Detandt M, Gehrig R, Jaeger S, Nolard N, Rantio-Lehtimäki A. Responses in the start of Betula (birch) pollen seasons

- to recent changes in spring temperatures across Europe. Int J Biometeorol. 2002;46(4):159-70. doi: 10.1007/s00484-002-0139-x.
- 35. Galán C, García-Mozo H, Vázquez L, Ruiz L, de la Guardia CD, Trigo MM. Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. Int J Biometeorol. 2005;49(3):184-8. doi: 10.1007/s00484-004-0223-5.
- 36. Rasmussen A. The effects of climate change on the birch pollen season in Denmark. Aerobiologia. 2002;18(3):253-65.
- 37. Carrera M, González-Fernández Á, Magadán S, Mateos J, Pedrós L, Medina I, et al. Molecular characterization of B-cell epitopes for the major fish allergen, parvalbumin, by shotgun proteomics, protein-based bioinformatics and IgE-reactive approaches. J Proteomics. 2019;200:123-33. doi: 10.1016/j.jprot.2019.04.005.
- 38. Chen H, Yang HW, Wei JF, Tao AL. In silico prediction of the T-cell and IgE-binding epitopes of Per a 6 and Bla g 6 allergens in cockroaches. Mol Med Rep. 2014;10(4):2130-6. doi: 10.3892/mmr.2014.2399.
- 39. Sharma P, Gaur SN, Arora N. In silico identification of IgE-binding epitopes of osmotin protein. PLoS One. 2013;8(1):e54755. doi: 10.1371/journal.pone.0054755.
- Wolff N, Yannai S, Karin N, Levy Y, Reifen R, Dalal I, et al. Identification and characterization of linear B-cell epitopes of beta-globulin, a major allergen of sesame seeds. J Allergy Clin Immunol. 2004;114(5):1151-8. doi: 10.1016/j.jaci.2004.07.038.
- Shams MH, Sohrabi SM, Jafari R, Sheikhian A, Motedayyen H, Baharvand PA, et al. Designing a T-cell epitope-based vaccine using in silico approaches against the Sal k 1 allergen of Salsola kali plant. Sci Rep. 2024;14(1):5040. doi: 10.1038/s41598-024-55788-x.
- 42. Mas S, Barderas R, Colás C, Quiralte J, Rodríguez R, Villalba M. The natural profilin from Russian thistle (Salsola kali) contains a low IgE-binding ability isoform--molecular and immunological characterization. FEBS J. 2012;279(23):4338-49. doi: 10.1111/febs.12024.
- Peeters K a. BM, Koppelman SJ, van Hoffen E, van der Tas CWH, den Hartog Jager CF, Penninks AH, et al. Does skin prick test reactivity to purified allergens correlate with clinical severity of peanut allergy? Clin Exp Allergy. 2007;37(1):108-15. doi: 10.1111/j.1365-2222.2006.02628.x.
- 44. Narayanan M, Freidl R, Focke-Tejkl M, Baranyi U, Wekerle T, Valenta R, et al. A B Cell Epitope Peptide Derived from the Major Grass Pollen Allergen Phl p 1 Boosts Allergen-Specific Secondary Antibody Responses without Allergen-Specific T Cell Help. J Immunol. 2017;198(4):1685-95. doi: 10.4049/jimmunol.1501741.
- Ebo DG, Hagendorens MM, Bridts CH, Schuerwegh AJ, De Clerck LS, Stevens WJ. Flow cytometric analysis of in vitro activated basophils, specific IgE and skin tests in the diagnosis of pollen-associated food allergy. Cytometry B Clin Cytom. 2005;64(1):28-33. doi: 10.1002/cyto.b.20042.
- 46. Balzer L, Pennino D, Blank S, Seismann H, Darsow U, Schnedler M, et al. Basophil Activation Test Using Recombinant Allergens: Highly Specific Diagnostic Method Complementing Routine Tests in Wasp Venom Allergy. PLoS One. 2014;9(10):e108619. doi: 10.1371/journal.pone.0108619.
- Pablos I, Eichhorn S, Briza P, Asam C, Gartner U, Wolf M, et al. Proteomic profiling of the weed feverfew, a neglected pollen allergen source. Sci Rep. 2017;7(1):6049. doi: 10.1038/s41598-017-06213-z.

Carlo Lombardi¹, Giovanni Passalacqua², Francesco Menzella³, Rikki Frank Mauritz Canevari⁴, Giovanni Danesi⁵, Alessandro Maria Pusateri⁵, Mauro Carone⁶, Carlo Vancheri⁷, Fabiano Di Marco⁸, Claudio Micheletto⁹, Giuseppina Manzotti¹⁰, Mario Di Gioacchino¹¹, Beatrice Bilò^{12,13}, Matteo Gelardi¹⁴, Gianenrico Senna¹⁵, Giorgio Walter Canonica¹⁶, on ARIA Italy Panel*

Chronic rhinosinusitis with nasal polyposis and biological agents: the ARIA-ITALY survey

¹Co-Chairman ARIA ITALY; Unit of Allergology, Clinical Immunology and Respiratory Diseases, Fondazione Poliambulanza, Brescia, Italy

²Co-Chairman ARIA-Italy; Allergy and Respiratory Diseases, IRCCS Policlinico S. Martino, University of Genoa, Genoa, Italy ³UOC Pulmonary, "S. Valentino" Hospital, AULSS 2 Marca Trevigiana, Montebelluna, Treviso, Italy

⁴Department of DISC, Otolaryngologist Clinic-IRCCS Policlinico San Martino, University of Genoa, Genoa, Italy

⁵Department of Otorhinolaryngology and Skull Base Microsurgery-Neurosciences, Papa Giovanni XXIII Hospital, Bergamo, Italy ⁶Fondazione Salvatore Maugeri, IRCCS, Istituto Scientifico di Telese Terme, Benevento, Italy

⁷UOC Respiratory System Diseases, Università degli Studi di Catania, Catania, Italy

⁸UOC Respiratory System Diseases, Papa Giovanni XXIII Hospital, Bergamo, Italy

⁹UOC Pulmonary, Azienda Ospedaliera Universitaria Verona, Verona, Italy

¹⁰Unit of Allergology, Casa di Cura B. Palazzolo, Bergamo, Italy

¹¹Società Italiana di Asma Allergologia e Immunologia Clinica, University of Chieti, Chieti, Italy

¹²Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Italy

¹³Allergy Unit, Department of Internal Medicine, University Hospital delle Marche, Ancona, Italy

¹⁴ENT Clinic, University of Foggia, Foggia, Italy

¹⁵Asthma Center and Allergy Unit, University of Verona and General Hospital, Verona, Italy

¹⁶Personalized Medicine, Asthma and Allergy, Humanitas Research Hospital, Rozzano, Milan, Italy

*Stefania Arasi, Diego Bagnasco, Ilaria Baiardini, Simona Barbaglia, Fabiola Barosso, Roberto Bernardini, Alvise Berti, Beatrice Bilò, Luisa Brussino, Frank Rikki Canevari, Giorgio Walter Canonica, Cristiano Caruso, Antonio Caviglia, Lorenzo Cecchi, Pasquale Comberiati, Lorenzo Cosmi, Marcello Cottini, Mariangiola Crivellaro, Danilo Di Bona, Alessando Fiocchi, Sandra Frateiacci, Matteo Gelardi, Giuseppe Guida, Enrico Heffler, Cristoforo Incorvaia, Massimo Landi, Amelia Licari, Luca Malvezzi, Manlio Milanese, Eustachio Nettis, Gianni Pala, Vincenzo Patella, Diego Peroni, Silvia Peveri, Francesca Puggioni, Alessandro Maria Pusateri, Erminia Ridolo, Oliviero Rossi, Eleonora Savi, Jan Schroeder, Veronica Seccia, Gianenrico Senna, Massimo Triggiani, Marzio Uberti, Gilda Varricchi, Maria Teresa Ventura, Maria Teresa Zedda

Key words

Chronic rhino sinusitis with nasal polyposis phenotype; CRSwNP; bronchial asthma; multidisciplinarity; biological agents.

IMPACT STATEMENT

The results of this survey obtained from an extensive number of Italian specialists allow some important concluding remarks about biologicals and the treatment of CRSwNP and its impact on asthma.

Corresponding author

Francesco Menzella
UOC Pulmonary
"S. Valentino" Hospital
AULSS 2 Marca Trevigiana
via S. Ambrogio di Fiera 37
31100 Treviso, Italy
ORCID: 0000-0003-3950-5789
E-mail: francesco.menzella@aulss2.veneto.it

Doi

10.23822/EurAnnACI.1764-1489.338

Summary

Background. Chronic rhinosinusitis (CRS) is an inflammatory disease that affects the nasal mucosa and the paranasal sinuses. CRS can be associated by nasal polyposis (CRSwNP phenotype) in up to 30% of patients and it is frequently associated with bronchial asthma. CRSwNP shows predominantly an underlying activation of type 2 inflammatory pathways with the involvement of eosinophils, IgE, interleukin (IL)-4, IL-5 and IL-13. Biological drugs that target these inflammatory cytokines are currently a therapeutic option recognized by guidelines for the treatment of uncontrolled form of the disease. Methods. As part of the activity of the "ARIA-Italy" working group, a panel of 255 Italian Ear, Nose and Throat (ENT) specialists, pneumologists and immuno-allergologists actively participated in this national survey and answered a series of questions geared toward understanding the main criteria for patient characterization and therapeutic decision, highlighting multidisciplinarity, and the implementation of the management of CRSwNP patients, as a part of the precision medicine concept and the appropriate use of the biologicals. Results. Two hundred and fifty-five experts and specialists participated in the survey. Conclusions. The results of this survey obtained from an extensive number of active specialists throughout Italy allow some important concluding remarks to be drawn. The main points of agreement were that multidisciplinary care teams provide many benefits but that, once the team is established, meetings and communication between members must be coordinated. Finally, the dissemination of national disease registries and the continuous updating of guidelines and position papers related to CRSwNP and comorbidities should be encouraged.

Introduction

Chronic rhinosinusitis (CRS) is an inflammatory disease affecting the nasal mucosa and paranasal sinuses, with prevalence varying in different geographical areas. In Europe, it is estimated that CRS may affect more than 10% of the adult population (1). The prevalent signs and symptoms that define CRS are nasal obstruction and congestion, anterior/posterior rhinorrhea, facial pain, hypo/anosmia, and sleep disturbances. CRS can present without (chronic rhinosinusitis without nasal polyposis, CRSsNP) or with nasal polyposis (chronic rhinosinusitis with nasal polyposis, CRSwNP). Polyps are semi-transparent, light gray lesions resulting from inflammation and remodeling of the mucosa of the sinuses or nasal cavity (2). Up to 30% of patients with CRS may present with the phenotypic form with nasal polyposis (3). From the patient's perspective, CRSwNP has a significant impact on the quality of life (QoL) (4). Patients with CRSwNP experience higher symptom scores and greater severity of the clinical disease if compared with patients with CRSsNP. From a pathophysiological point of view, CRSwNP is characterized by the activation of specific inflammatory pathways that define its endotype and influence its severity, course and response to treatments (1). In the majority of patients, the CRSwNP is associated with the activation of type 2 inflammatory pathways, with an increase in the concentration of eosinophils (systemic and/or local), IgE (systemic or even just local) and interleukin (IL)-4, IL-5 and IL-13 (5). Patients with CRSwNP frequently present with comorbidities, such as bronchial asthma, including late-onset and often severe forms, also characterized by a type 2 inflammation pattern, suggesting the existence of common immunological pathways between the two diseases (6). The chronicity characteristic of the disease and comorbidities imply frequent treatments to control recurrent symptoms including medical therapies (intranasal corticosteroids, oral steroids, antibiotics) and surgical approach (7). The high frequency of the use of systemic corticosteroids, however, is associated with complications and adverse events and that make the management of these patients complex (8). Today, only about 35-40% of patients with CRS are well controlled after conventional treatment (9). Comorbidities also require patients to be followed by different specialists, with an increasing need to coordinate interventions, to optimize their timing and effectiveness. In light of what has been highlighted on the diagnostic and treatment clearly emerges the importance of multidisciplinarity as the most appropriate tool for the management of the complex patient with CRSwNP. The introduction of biologic agents (monoclonal antibodies directed against molecules involved in inflammatory mechanisms such as IgE, IL-5, IL-4 and IL-13) as a therapeutic option for the treatment of CRSwNP has helped to improve significantly outcomes in patients with uncontrolled disease, improving QoL, and providing the basis for the achievement of personalized treatment targeted to the peculiar phenotypic and endotypic characteristics of each patient. However, the introduction of the new therapies raises new questions in clinical practice, such as the correct definition of the target patient type, the timing of intervention and the definition of the best biological agent for the specific patient phenotype/endotype, to ensure a personalized therapy while optimizing the cost/effectiveness of treatment (6). In particular, for the use of biologic drugs, there is a need for skills appropriate specialists who take into account the different components of the pathology (involvement of the upper and/or lower airways, allergies, drug hypersensitivity, recurrent infections, assessment of nasal structures and QoL of the patient). In real life clinical experience, complex situations are common, with patients with a long-standing history of pathology, undergoing different treatments including for the comorbidities, for whom the therapeutic decision is complicated and not clearly defined by the national and international Guidelines. For these patients, the multidisciplinary approach is crucial and mandatory.

Materials and methods

As part of the activities of the ARIA-Italy working group, a survey was organized with the participation of experts and specialists in allergology-immunology, pulmonology, and otolaryngology active throughout the Italian country. The survey was based on the completion of a questionnaire consisting of 17 items (table I). The questions focused on the following points: 1) management of the patient with CRSwNP in clinical practice; 2) factors to be considered for therapeutic decision-making (comorbidities, previous surgery, etc.); 3) criteria for characterizing the patient to undergo the treatment and choice of biological agent; and 4) role of multidisciplinarity for personalized patient management. Starting from literature evidence and the indications for treatment reported in the Guidelines, the participants answered the questions anonymously and taking into account the clinical practice in relation to the different regional realities. The opinions were collected during the period 2022-2023 and were discussed in a webinar coordinated by the authors of this article.

Results

Two hundred and fifty-five experts and specialists (age range: 26-77 years; M: 56%; F: 44%) participated in the survey. Participants came from all regions of Italy, with predominance for those from Lombardy – this region is the most populous in Italy with about 10 million people. Regarding the type of activity performed, the following distribution was observed: 130 hospital practitioners (51%); 84 freelancer practitioners (33%), 41 university professors and researchers (16%). Regarding the participant's specialty branch the distribution was as follows: 80 ENT specialists (31%), 71 immuno-allergologists (28%), and 104 pneumologists (41%) (figure 1). Although a wide distribution of responses was found, more than 64 of the respondents (25%) believed that the presence of asthma in their patients with CRSwNP was between 20 and 30% of the total cases; while on the other hand, more than 30% of the respondents believed that the presence of CRSwNP in patients with asthma was between 20 and 30% (figure 2). Finally, 250 participants (98%) thought it was important to assess the

Table I - Survey ARIA CRS with polyposis and biologics: questionnaire.

(1)	Age (yrs) Sex (M/F)		
(2)	Specialty: 1) Allergology 2) Pneumology 3) ENT 4) Internal Medicine 5) Pediatrics		
(3)	REGION of your Country (Italy)		
(4)	Employment status: 1) University 2) Hospital Physician 3) Freelancer Practitioner		
(5)	Approximately in how many of the patients with nasal polyposis do you find asthma? 5-10% 11-20% 20-30% 30-50% > 50%		
(6)	Approximately in how many of the patients with asthma do you find nasal polyposis? 5-10% 11-20% 20-30% 30-50% >50%		
(7)	To patients with nasal polyposis, do you make endoscopic surgery the first choice? YES NO		
(8)	In patients with nasal polyposis, do you use systemic steroids? YES, in cycles YES, continuously NO, never		
(9)	In case of using biological agent (according to indications) which one do you give preference to? Dupilumab Mepolizumab Omalizumab		
(10)	When choosing a biologic agent to treat CRSwNP, do you take into account the presence of asthma comorbidity? YES NO		
(11)	Do you think it is important to assess the presence of atopy in patients with CRSwNP? YES, always NO, never		
(12)	For patients with N-ERD, who are difficult to treat and frequently have recurrence of polyposis, do you consider them suitable for therapy with biologic agents? YES NO		
(13)	Where there is an indication, do you always initiate biologic agent therapy after polypectomy? YES, always NO, not necessary		
(14)	How long after starting therapy with biological agent to treat CRSwNP do you consider the patient responder or non-responder? 3 months 6 months 9 months 12 months		
(15)	In case you are an ENT specialist or pulmonologist/allergist, do you always have the referring counterpart specialist? YES NO		
(16)	Does the facility where you work have a multidisciplinary team for the management of patients with CRSwNP? YES NO		
(17)	In case of nasal polyposis, which of these tests do you use for monitoring over time? NPS SNOT-22 VAS total symptoms all of the above		

Figure 1 - Typology of work activity and specialty branch of the Survey participants.

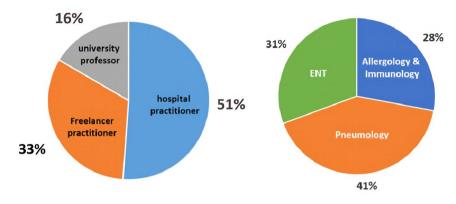
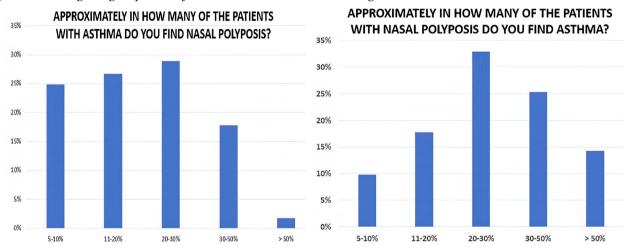
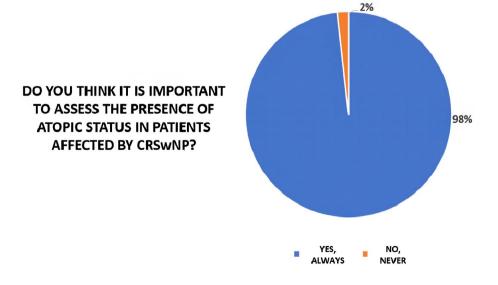




Figure 2 - Items regarding the presence of comorbidities in the SRCwNP setting.

presence of an atopic condition in CRSwNP patients (**figure 2**). Regarding CRSwNP therapeutic aspects, only 82 participants (32%) believe that endoscopic surgery should be the first choice in the treatment of CRSwNP today (figure 3). Regarding the use of systemic steroids in the treatment of CRSwNP, 68% of participants use them in cycles, 31% never use them, and only 2% use them continuously (figure 3). Some questions were specifically asked to assess participants' treatment behavior regarding the use of biological agents in CRSwNP. As can be seen from the results shown in figure 4, the participants believe that the preference among the various biological agents available in Italy today for the therapy of CRSwNP should be given to dupilumab (75% of responses); however, it should be pointed out that dupilumab was the first to be introduced for the treatment of polyposis and experience with omalizumab and mepolizumab in Italy was limited at the time the survey was conducted. When choosing the biological agent for the treatment of polyposis, asthma comorbidity is largely (98% of responses) taken into account. The use of biological agents is also being considered in other complex diseases

Figure 3 - Items regarding the choice of endoscopic surgery and the use of systemic steroids.

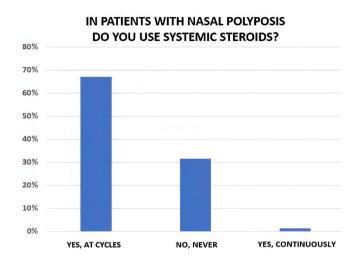


Figure 4 - Specific questions and answers (%) about the approach to use biological agents in patients with CRSwNP.

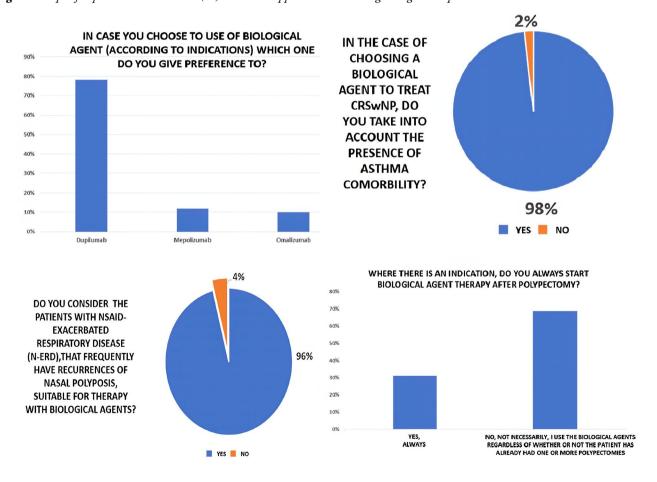
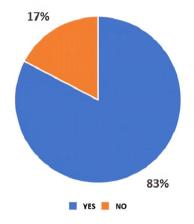
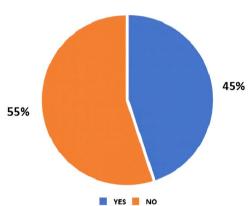




Figure 5 - Specific questions and answers (%) about the organizational and multidisciplinary dynamics in patients with CRSwNP.

IN CASE YOU ARE AN ENT SPECIALIST OR PULMONOLOGIST/ALLERGIST DO YOU ALWAYS HAVE THE COUNTERPART REFERRAL SPECIALIST?

IS THERE A MULTIDISCIPLINARY TEAM IN THE STRUCTURE IN WHICH YOU WORK FOR THE MANAGEMENT OF PATIENTS WITH CRSWNP?

characterized by the presence of comorbidities, such as N-ERD. Seventy percent of respondents believed that the use of biological agents in CRSwNP should not necessarily be postponed to polypectomy. Regarding the specific question "After starting therapy with biological agent to cure CRSwNP when do you consider the patient responder or non-responder?" participants answered: 3 months, 6 months, 9 months, and 12 months in 13%, 59%, 9%, and 19%, respectively; therefore, most of the participants believe that a 6-month observation is the most appropriate for evaluating the efficacy of CRSwNP biological therapy. The following question was then formulated: "In case of nasal polyposis, which of these tests (SNOT-22, VAS, NPS) do you use for monitoring the response to therapy with biological agents over time?" and participants answered 22% SNOT-22, 6% VAS, 5% NPS, and 67% all of the above, respectively. From this response can be inferred the focus on making the assessment of response to biological agents using multiple rating scales at the same time. The last part of the survey focused on opinions regarding the multidisciplinary approach to CRSwNP. While it is true that almost all participants (83%) confirm that they relate to other specialists in the management of this pathology, particularly when it is associated with other comorbidities (such as asthma); it is also true that only in a limited number of Centers (45%) has a multidisciplinary working group been established with facilitated diagnostic-therapeutic pathways for patients (figure 5).

Discussion and conclusions

The results of this survey obtained from an extensive number of active specialists throughout Italy allow some important conclud-

ing remarks to be drawn. The course of the patient with CRSwNP is made complex by the numerous symptoms and comorbidities that contribute to the definition of disease severity. The current availability of biological agents represents a potential improvement in the treatment and QoL of patients; but the use and choice of the biologic agents need to be optimized in clinical practice through discussion among specialists, so that it can be targeted to those patients who can benefit most from it, to reduce therapeutic inappropriateness and economic burden. In the context of CRSwNP and comorbidities the patients' point of view or patient perspective can be viewed through two different but related lenses: 1) the individual's perspective as it relates to each patient's individual situation and 2) the aggregate perspective of the CRSwNP population, i.e., a perspective of common denominators despite unique individual variations. Recognition of the importance of the individual patient's perspective regarding their experience of CRSwNP is exemplified by the evolving patient/ healthcare providers clinical interaction. Indeed, increasing recognition of the complexity of CRSwNP and comorbidities diagnosis and its treatments requires a "bidirectional exchange" of opinions and objectives between patients and healthcare providers, in order to promote integration of the patient perspective into the patient/healthcare providers relation-ship. Treatment focused on the underlying disease often fails to address the ripples of impact provoked by CRSwNP with comorbidities which may become the main source of concern to the patient. For the patient perspective to be valid, it must be informed by an adequate comprehension by the patient of the facts of the clinical situation (10, 11). Furthermore, the application of narrative medicine methodology could prove useful (12). Because patients with CRSwNP have had only limited occasions to unite to have their voices heard, hence missing the opportunity to contribute to the improvement of CRSwNP care, it was recently published a Patient Advisory Board Statement of the European Forum for Research and Education in Allergy and Airways diseases (EUFOREA) (13). The aim of this initiative was to identify unmet needs in CRSwNP from the perspective of CRSwNP patients. Semi-structured interviews were conducted individually with European patients with CRSwNP and a panel of 30 members of the Patient Advisory Board reviewed the interview report and provided further input. Along with a loss of smell and continuous nasal secretions, most patients reported poor sleep quality and psychological impact as the most bothersome symptoms. Patients' frustrations relate primarily to the underestimation of the disease burden, the lack of coordination of care and the limited treatment options available to them. Treatment options with systemic steroids and/or nose surgery both have positive and negative aspects, including the lack of long-lasting efficacy. Better coordination of care, more patient-centered care, greater public awareness, increases in the disease mechanisms and better therapeutic options would be warmly welcomed by CRSwNP patients. The multidisciplinary approach, organization into networks, and the use of registries are identified as the key strategies for establishing a common language between the specialists and the patient, to implement the connection between specialist centers and the territory, diagnosis and management of the patient, with the goal of personalization of care. CRSwNP is certainly a "cross-cutting" condition that needs, in both the diagnostic and therapeutic phases, the contribution of multiple specialized expertise (14). Pharmacotherapy often may fail to treat CRSwNP and endoscopic sinus surgery (ESS) is often required. However, the synergistic use of pharmacotherapy and surgery often does not achieve disease control in the most severe cases. Furthermore, CRSwNP is associated with greater morbidity compared with CRSsNP, due to repeated exposure to OCS and surgery. The results of the present survey highlighted these contradictions. In particular, the response to question 8 concerning the use of OCS in CRSwNP, prompts a noteworthy observation: one-third of the surveyed specialists refrain from utilizing OCS, despite its established utility in controlling CRSwNP and assessing disease severity, along with its implications for biological therapy eligibility and for the potential excessive OCS use on CRSwNP management. These contradictory behaviors also emerge from the answers to question 13 about the sequencing of surgery and biological therapy; the striking revelation that 70% of respondents initiate biological therapy irrespective of prior surgical intervention suggests a prevailing inclination toward a medically-oriented approach to CRSwNP. This deviation from established guidelines advocating surgical intervention as the cornerstone of CRSwNP management, invites scholarly discourse and collaborative exploration. Furthermore, the significant economic and clinical burden of CRSwNP highlights the need for better treatment options and reorganization of the current care pathways (13). In this context, a multidisciplinary approach may improve CRSwNP management in patients with comorbidities, but currently there are only sparse examples of shared management models. Recently, an Italian panel of clinicians with different clinical expertise (pulmonologists, ear, nose and throat specialists, immunologists and allergy physicians) identified three different profiles of patients with coexisting asthma and nasal symptoms and discussed the specific tracks to guide a comprehensive approach to their diagnostic and therapeutic management: 1) Patient with severe asthma who needs to start a biologic therapy at the Allergy/Pulmonary Unit complaining about nasal symptoms; 2) Patient with severe asthma with ongoing biologic therapy at the Allergy/Pulmonary Unit complaining about nasal symptoms; and 3) Patient with Severe CRSwNP at the ENT Unit Complaining about Asthma Symptoms (15). Based on these different types of patients with comorbidities and different clinical and therapeutic presentation characteristics, it seems clear that there is a need to define a multidisciplinary approach by at least ENT specialist, allergist-immunologist and pulmonologist in order to evaluate symptoms and clinical history, confirm diagnoses and to identify the best treatment strategy aimed at controlling both diseases and preventing clinical exacerbations. Regarding the preponderance of respondents' choice of dupilumab (question 9), it should be pointed out that, because the opinions in the present survey were collected in the period 2022-2023, the use of mepolizumab and omalizumab is probably underestimated because these biologics have been introduced in Italy for the treatment of CRSwNP as of March 2023. To improve the management aspects of this clinical-pathological area, a study was recently published that has summarized the outcomes of a Delphi process involving a multidisciplinary panel of ENT specialists, pulmonologists, and allergist-immunologists involved in the management of CRSwNP, who attempted to reach consensus on key statements relating to the diagnosis, endotyping, classification and management (including the right placement of biologic agents) of CRSwNP patients (3). On the following points, we think we can agree that there are many theoretical benefits of a multidisciplinary approach, which include the reduced need for documents to make referrals, access to services and treatments that would otherwise be inaccessible (e.g., radiological examinations, new biological treatments), optimized flow of patients from primary to secondary to tertiary care, management of adverse events, and obtaining a detailed overview of the management of multiple therapies for more than one pathology (16). Indeed, multidisciplinary care teams assure patient centrality, improvement of direct and indirect outcomes, cost reduction, and more appropriate therapeutic decisions (17-19). Once a multidisciplinary team is created, there is a need for coordination of meetings and communication between the various members. Among the effective and efficient planning tools capable of linking all phases of diagnosis-care-assistance are, along with the Individual Therapeutic Plan (ITP) and Individualized Care Plan (ICP), the Diagnostic Therapeutic Care Pathways (DTCP). Other additional factors were considered to be useful as theoretical-practical multidisciplinary training events on diagnosis and therapy, which will attract considerable interest from ENT specialists, pulmonologists and immuno-allergists. Educational events were also considered to be important since the approach to CRSwNP and comorbidities is evolving rapidly, and the number of treatment options is expanding. Finally, the use and dissemination of national disease registries and the continuous updating of guidelines and position papers related to CRSwNP and comorbidities should be encouraged.

Fundings

None.

Contributions

CL, GP, FM, GWC: conceptualization, data curation, formal analysis, writing – original draft, writing – review & editing; the other authors participated in the survey, reviewed and approved the manuscript.

Conflict of interests

The authors declare that they have no conflict of interests.

Acknowledgements

We would like to thank the In&fo&med s.r.l. staff for their technical support. We would like to thank all the participants and experts' group who participated to the survey for their decisive contribution to this paper.

- Bachert C, Marple B, Schlosser RJ, Hopkins C, Schleimer RP, Lambrecht BN, et al. Adult chronic rhinosinusitis. Nat Rev Dis Primers. 2020;6(1):86. doi: 10.1038/s41572-020-00218-1.
- Fokkens WJ, Lund VJ, Hopkins C, Hellings PW, Kern R, Reitsma S, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology. 2020;58(suppl S29):1-464. doi: 10.4193/Rhin20.600.
- 3. De Corso E, Bilò MB, Matucci A, Seccia V, Braido F, Gelardi M, et al. Personalized Management of Patients with Chronic Rhinosinusitis with Nasal Polyps in Clinical Practice: A Multidisciplinary Consensus Statement. J Pers Med. 2022;12(5):846. doi: 10.3390/jpm12050846.
- Mullol J, Azar A, Buchheit KM, Hopkins C, Bernstein JA. Chronic Rhinosinusitis With Nasal Polyps: Quality of Life in the Biologics

- Era. J Allergy Clin Immunol Pract. 2022;10(6):1434-53.e9. doi: 10.1016/j.jaip.2022.03.002.
- Bachert C, Gevaert P, Hellings P. Biotherapeutics in Chronic Rhinosinusitis with and without Nasal Polyps. J Allergy Clin Immunol Pract. 2017;5(6):1512-6. doi: 10.1016/j.jaip.2017.04.024.
- Naclerio R, Mullol J, Stevens WW. A Decade of Clinical Advances in Chronic Rhinosinusitis: 2012-2022. J Allergy Clin Immunol Pract. 2023;11(1):43-50. doi: 10.1016/j.jaip.2022.10.030.
- Hellings PW, Alobid I, Anselmo-Lima WT, Bernal-Sprekelsen M, Bjermer L, Caulley L, et al. EUFOREA/EPOS2020 statement on the clinical considerations for chronic rhinosinusitis with nasal polyps care. Allergy. 2024;79(5):1123-33. doi: 10.1111/all.15982.
- 8. De Corso E, Pipolo C, Cantone E, Ottaviano G, Gallo S, Canevari FRM, et al. Survey on Use of Local and Systemic Corticosteroids in the Management of Chronic Rhinosinusitis with Nasal Polyps: Identification of Unmet Clinical Needs. J Pers Med. 2022;12(6):897. doi: 10.3390/jpm12060897.
- Huang T, Zhou J, Yuan F, Yan Y, Wu D. The percentage of controlled chronic rhinosinusitis after treatment: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol. 2024;281(5):2183-94. doi: 10.1007/s00405-023-08363-5.
- Carman KL, Dardess P, Maurer M, Sofaer S, Adams K, Bechtel C, et al. Patient and family engagement: a framework for understanding the elements and developing interventions and policies. Health Aff (Millwood). 2013;32(2):223-31. doi: 10.1377/hlthaff.2012.1133.
- 11. Coulter A, Ellins J. Effectiveness of strategies for informing, educating, and involving patients. BMJ. 2007;335(7609):24-7. doi: 10.1136/bmj.39246.581169.80.
- Marini MG. Narrative Medicine: Bridging the Gap between Evidence-Based Care and Medical Humanities. Cham, Springer, 2016.
- 13. Claeys N, Teeling MT, Legrand P, Poppe M, Verschueren P, De Prins L, et al. Patients Unmet Needs in Chronic Rhino-sinusitis With Nasal Polyps Care: A Patient Advisory Board Statement of EUFOREA. Front Allergy. 2021:2:761388. doi: 10.3389/falgy.2021.761388.
- 14. Lombardi C, Asero R, Bagnasco D, Blasi F, Bonini M, Bussi M, et al. ARIA-ITALY multidisciplinary consensus on nasal polyposis and biological treatments. World Allergy Organ J. 2021;14(10):100592. doi: 10.1016/j.waojou.2021.100592.
- Seccia V, D'Amato M, Scioscia G, Bagnasco D, Di Marco F, Fadda G, et al. Management of Patients with Severe Asthma and Chronic Rhinosinusitis with Nasal Polyps: A Multidisciplinary Shared Approach. J Pers Med. 2022;12(7):1096. doi: 10.3390/jpm12071096.
- Senna G, Micheletto C, Piacentini G, Schiappoli M, Girolomoni G, Sala G, et al. Multidisciplinary management of type 2 inflammatory diseases. Multidiscip Respir Med. 2022;17(1):813. doi: 10.4081/mrm.2022.813.
- 17. Nolte E, McKee M. Caring for people with chronic conditions. A health system perspective. Open University Press. Available at: https://eurohealthobservatory.who.int/docs/librariesprovider3/studies---external/caring-for-people-with-chronic-conditions.pdf.
- 18. Gance-Cleveland B, Ozkaynak M. Multidisciplinary teams are essential for developing clinical decision support to improve pediatric health outcomes: An exemplar. J Pediatr Nurs. 2021:58:104-6. doi: 10.1016/j.pedn.2020.08.012.
- Holmes LJ, Sheehan R, Elsey L, Allen D. The multidisciplinary team severe asthma day case assessment and its impact on patient care. Br J Hosp Med (Lond). 2021;82(7):1-7. doi: 10.12968/hmed.2021.0142.

Rita Barbosa Silva¹, Ângela Moreira¹, Beatriz Pimenta¹, Inês Pádua¹⁻³

Allergens weaning: what is missing from commercial baby food?

¹University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal

²UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal

³Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences, CESPU, Gandra, Portugal

KEY WORDS

Food allergy; food allergen; complementary feeding; weaning; prevention.

Corresponding author

Inês Pádua
University Institute of Health Sciences (IUCS), CESPU
Rua Central da Gandra 1317
4585-116 Gandra, Portugal
ORCID: 0000-0003-1100-9441
E-mail: maria.silva@iucs.cespu.pt

Doi

10.23822/EurAnnACI.1764-1489.357

IMPACT STATEMENT

This study highlights the scarcity of major food allergens in commercial baby foods and their frequent ultra-processing, emphasizing the need for healthier, allergen-inclusive products to support food allergy prevention.

Summary

Background. Current recommendations for infant weaning suggest introducing common food allergens by the age of 12 months. While homemade meals are advisable, there is a notable demand for commercially available complementary foods (CACF). Furthermore, emerging evidence suggests a potential link between the consumption of ultra-processed products and the incidence of allergic diseases. This study aimed to examine the presence of the fourteen main food allergens in CACF ingredients through label analysis and evaluate their extent of processing. Methods. Between January and February 2024, labels of all CACF found in infant feeding sections of 10 Portuguese grocery retailers were analyzed. CACF were categorized based on the NOVA food classification system's processing levels. Milk formulas, products for children over 15 months, and those for children with food allergies or intolerances were excluded. Results. Of the 492 products analyzed, 132 contained wheat and 112 contained milk. 16 products included fish and 6 contained eggs. Soy was listed as an ingredient in 11 products, mainly as soy lecithin. Only 2 products contained nuts, and 1 product contained peanuts. None of the products contained the remaining six allergens. The majority of milk- and wheat-containing products were classified as ultra-processed and contained added sugars and/ or sweeteners. Conclusions. Despite the current guidelines, commercial baby foods often lack major allergens, namely nuts and peanuts, eggs, and shellfish. Our results underscore the need for healthy, age-appropriate, minimally processed products that incorporate rather than exclude major food allergens.

Introduction

The introduction of allergenic foods during complementary feeding has been a topic of significant research interest in the context of preventing food allergy in infants. Studies have indicated that the early introduction of allergenic foods, such as peanut and egg, during the complementary feeding period may reduce the risk of developing food allergies, even in infants at high risk of food allergy (1, 2). This approach represents a shift from previous recommendations of food allergen avoidance to the promotion of

deliberate and regular dietary intake of these allergens during the introduction of complementary feeding (3).

Although it is advisable for parents to introduce home-prepared meals (4, 5), there is a strong consumer demand for commercially available complementary foods (CACFs), and the choice in supermarkets is vast and driven for many reasons, such as convenience, portability and food safety (6). Accordingly, although scientific evidence on infant consumption trends is still scarce, a study conducted on a cohort of infants and children from sev-

eral European countries demonstrated that the majority consume CACFs during the first two years of life (7).

The main objective of this study was to evaluate the presence of the eight main allergens (cow's milk, egg, wheat, soy, peanut, nut, fish and shellfish) as an ingredient in CACFs through the analysis of their labelling.

Materials and methods

From January to February 2024, a cross-sectional study of product labels within sections intended for infant feeding, encompassing both physical and digital retail platforms, was conducted across ten Portuguese grocery retailers/companies and infant food manufacturers. The CACFs were categorized into five distinct classes: snacks, meals, fruit pots and pouches, porridges, and yoghurt/ veggie-based yoghurt pouches. Milk formulas were excluded, as well as products intended for children older than 15 months and for children with food intolerances or allergies. Ingredient lists were assessed for the presence of the fourteen substances or products causing allergies or intolerances, according to Reg EU nº 1169/2011 (cow's milk, soy, egg, wheat, peanut, tree nuts, fish, shellfish, sesame, lupine, mustard, celery, and sulfites). The content of sugar, sweeteners and additives was also analyzed, and food products were classified by degree of processing based on the groups defined by the NOVA food classification system (8).

Results

We have identified 492 CACFs for infants aged less than 15 months. Among these products, 41.5% (n = 204) were fruit pots and pouches, 20.3% (n = 100) were porridges, 13.8% (n = 68) were categorized as finger food snacks, 13.2% (n = 65) as prepared meals, and 11.2% (n = 55) as yoghurt/vegetable-based yoghurt pouches.

Food allergen presence

The food category that presented the highest presence of allergens was yoghurt/veggie-based yoghurt pouches (87%) followed by porridges (86%) whereas fruit pots and pouches was the category with the lowest presence of food allergens.

Concerning food allergen presence, the most common food allergens in CACFs were wheat, reported in 132 CACFs (26.8%), and cow's milk, reported in 121 (24.6%). Soy was identified as an ingredient in 11 products (2.2%); however, in the majority of them (10 products), it was in the form of soy lecithin for emulsifying properties. Fish was reported as an ingredient only in 16 products (3.3%), and in 3 of these was in the form of fish oil. Egg was found in 6 CACFs (1.2%), nuts in 2 (0.4%), and peanuts in only one product (0.2%). None of the products contained shell-fish, sesame, lupine, mustard, celery, and sulfites.

Allergens were described and highlighted in accordance with current regulations, mostly with the whole food name, even if they

were non-natural ingredients for which more terminology was required, such as hydrolyzed wheat or soy lecithin.

In this study, 168 (34.1%) CACFs had allergens listed in the first three ingredients of their labels. For all CACFs, these allergens were wheat and/or cow's milk, except for those containing fish. None of the products listed the specific percentage of milk, wheat, soy, fish, egg, nut or peanut protein present, not enabling an estimation of the quantity in grams of food allergen present per serve.

Precautionary allergen labelling

Precautionary allergen labelling, which is voluntary and not standardized following the legislation issued by the European Union (Reg EU no 1169/2011), was found in 17.7% of products (n = 87). The most frequently reported allergen in labelling warnings was soy (n = 60), followed by milk (n = 48) and nuts (n = 23).

Sugar content and degree of processing of the CACFs containing major food allergens

The analysis also included an assessment of added sugar, free sugars, and artificial sweeteners content in CACFs. Among products containing cow's milk and wheat, 86.8% (n = 105) and 72.0% (n = 95), respectively, were found to contain sugars and/or sweeteners. All soy lecithin-containing products also contained sugars and/or sweeteners, and similarly, the three fish products containing fish oil were found to be sweetened. Regarding products containing eggs, half of them also contained sugar/sweeteners. No products with nuts and peanuts contain sugar or sweeteners. Food products were also classified by degree of processing, based on the groups defined by the NOVA food classification system (8). The NOVA system classifies all foods and food products into four groups, according to the nature, extent, and purpose of industrial food processing applied. Group 4 corresponds to ultra-processed foods (UPF), defined as formulations of ingredients (as oils, fats, sugars, starch, protein isolates), primarily designed for industrial applications, that are submitted to various sequences of industrial processes, often necessitating high-tech equipment. These processes include the fractioning of whole foods, use of techniques such as extrusion, molding and pre-frying, and the use of additives at various stages of manufacture (9). In this sample, 253 of the total CACF were classified as UPF, 76 as processed food (PF), and 163 as minimum processed food (MPF). The CACF class with the most products classified as UPF were fruit pots and pouches (99 products), followed by porridges (n = 81) and yoghurt/veggie-based yoghurt pouches (n = 30). The results also showed that most products containing milk (n = 110; 90.9%) and wheat (n = 97; 73.5%) were UPF. 2 of the 6 egg-containing products were also UPF.

Discussion and conclusions

The results of our study reveal that CACFs in Portugal have a generally low presence of major food allergens, not reflecting the current infant feeding and allergy prevention guidelines that the prioritize inclusion of food allergens in order to foster oral tolerance and diminish the likelihood of food allergy development. The latest Portuguese national recommendations for complementary feeding date from 2019 (10), and despite advising that the introduction of potentially allergenic foods not be delayed, they are still silent regarding the imperative of introducing these allergens in terms of allergy prevention. Notably absent from these guidelines is explicit guidance on introducing tree nuts, peanuts and shellfish, potentially influencing both household attitudes and product development by the food industry, notwithstanding the broader context provided by international guidelines. Few studies exist on the prevalence of food allergies in Portugal. Two studies in pediatric age reported a prevalence of food allergies of 1% in children and adolescents (11, 12), and for adults, the reported prevalence was between 1% and 4% (13, 14). However, considering the study period or the studies' geographical specificity, the results may not be fully representative.

Nevertheless, data from these studies (11-14) show that most foods implicated in allergic reactions are included in the so-called "big eight allergens". Likewise, the Portuguese Anaphylaxis Registry reported that food is the leading cause of anaphylaxis in the pediatric population, with cow's milk, tree nuts, shellfish, egg, fresh fruits, fish, and peanut being the main elicitors (15). These data reinforce the importance of concerted strategies regarding food allergy prevention, particularly for major food allergens.

Different studies in different countries have focused on nutritional analysis of CACF (16-19), however there is a paucity of works that address the allergen content of weaning foods. In this context, our results are in line with previous results reported in Australia (20) and United Kingdom (21), where low availability of CACF with food allergens is also reported. Although the legal, commercial and epidemiological contexts differ between Portugal and these two countries, the results taken together highlight the need for greater effort in developing and accepting CACF with allergens for infants.

We found that in addition to the low allergen content of CACF, those that contain them are mostly UPF and contain sugar and/ or sweeteners, making them not nutritionally compliant to be widely recommended. Recommendations for complementary feeding have been consistent in recommending not to introduce/limit sugars and sweeteners (22). For UPF, emerging evidence suggests that the consumption of ultra-processed products could be positively associated with the occurrence of food allergic diseases and may affect allergy prevention, possible mainly due to the presence of advanced glycation end products (AGEs) (23, 24), emulsifiers (25) and changes in gut microbiome composition (26). Apart from the limited presence of allergen-containing products and their nutritional quality, it is crucial to highlight that the recommended age ranges specified by manufacturers may also not align with allergen weaning guidelines. For instance, despite the

recommendation to introduce nuts and peanuts from 6 months onwards (3, 22), the available products are marketed for children aged over 9 and 12 months, respectively. This point also deserves some reflection, considering consumption trends in Portugal, which reflect a growing presence of nuts in the population's diet (27), and the fact that peanuts are one of the allergens associated with anaphylactic reactions (15).

Our study has limitations such as the fact that we analyzed a small number of products that can be introduced into children's diets, despite having analyzed practically all of those that are marketed to them. Despite these limitations, our study allows us to characterize the national supply in terms of CACFS considering its use for the allergens weaning. It is also, to our knowledge, the first work that specifically relates the content of allergenic ingredients with the content of added sugar and sweeteners and the degree of processing.

Our results reinforce the need for more significant investment in developing healthy, age-adapted, minimally processed products that include, rather than avoid, major food allergens. At the same time, continual public health messaging strategies are essential for effectively encouraging caregivers to safely introduce major food allergens into home-prepared meals and also nationally adapted, scientific and practical guidance that meets the potential for preventing allergic disease.

Fundings

None.

Contributions

RBS: conceptualization, methodology, formal analysis, investigation, writing – original draft. AM, BP: conceptualization, methodology, formal analysis, investigation. IP: conceptualization, methodology, writing – review & editing, visualization, supervision.

Conflict of interests

The authors declare that they have no conflict of interests.

- Du Toit G, Roberts G, Sayre PH, Bahnson HT, Radulovic S, Santos AF, et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med. 2015;372(9):803-13. doi: 10.1056/NEJMoa1414850.
- Perkin MR, Logan K, Tseng A, Raji B, Ayis S, Peacock J, et al. Randomized Trial of Introduction of Allergenic Foods in Breast-Fed Infants. N Engl J Med. 2016;374(18):1733-43. doi: 10.1056/NEJMoa1514210.
- 3. Fleischer DM, Chan ES, Venter C, Spergel JM, Abrams EM, Stukus D, et al. A Consensus Approach to the Primary Prevention of Food Allergy Through Nutrition: Guidance from the American Academy of Allergy, Asthma, and Immunology; American College of Allergy,

- Asthma, and Immunology; and the Canadian Society for Allergy and Clinical Immunology. J Allergy Clin Immunol Pract. 2021;9(1):22-43.e4. doi: 10.1016/j.jaip.2020.11.002.
- Knight T, Smith PK, Soutter V, Oswald E, Venter C. Is the low pH of infant and toddler foods a concern? Sampson H, ed. Pediatr Allergy Immunol. 2021;32(5):1103-6. doi:10.1111/pai.13414.
- Koletzko B, Bührer C, Ensenauer R, Jochum F, Kalhoff H, Lawrenz B, et al. Complementary foods in baby food pouches: position statement from the Nutrition Commission of the German Society for Pediatrics and Adolescent Medicine (DGKJ, e.V.). Mol Cell Pediatr. 2019;6(1):2. doi: 10.1186/s40348-019-0089-6.
- Isaacs A, Neve K, Hawkes C. Why do parents use packaged infant foods when starting complementary feeding? Findings from phase one of a longitudinal qualitative study. BMC Public Health. 2022;22(1):2328. doi: 10.1186/s12889-022-14637-0
- Theurich MA, Zaragoza-Jordana M, Luque V, Gruszfeld D, Gradowska K, Xhonneux A, et al. Commercial complementary food use amongst European infants and children: results from the EU Childhood Obesity Project. Eur J Nutr. 2020;59(4):1679-92. doi: 10.1007/s00394-019-02023-3.
- Monteiro CA, Cannon G, Lawrence M, Costa Louzada ML, Pereira Machado P. Ultra-processed foods, diet quality, and health using the NOVA classification system. 2019.
- Monteiro CA, Cannon G, Moubarac JC, Levy RB, Louzada MLC, Jaime PC. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018;21(1):5-17. doi: 10.1017/S1368980017000234.
- Rêgo C, Lopes C, Durão C, et al. Alimentação Saudável dos 0 aos 6 anos - Linhas de Orientação para Profissionais e Educadores. 2019.
- Jorge A, Soares E, Sarinho E, Lorente F, Gama J, Taborda-Barata L. Prevalence and clinical features of adverse food reactions in Portuguese children. Allergy Asthma Clin Immunol. 2017;13(1):40. doi: 10.1186/s13223-017-0212-y.
- Lozoya-Ibáñez C, Morgado-Nunes S, Rodrigues A, Fernandes P, Lourenço O, Mafalda Fonseca A, et al. Prevalence and clinical features of adverse food reactions in Portuguese adolescents. World Allergy Organ J. 2020;13(8):100453. doi: 10.1016/j.waojou.2020.100453.
- Lozoya-Ibáñez C, Morgado-Nunes S, Rodrigues A, Lobo C, Taborda-Barata L. Prevalence and clinical features of adverse food reactions in Portuguese adults. Allergy Asthma Clin Immunol. 2016;12(1):36. doi: 10.1186/s13223-016-0139-8.
- Falcão H, Lunet N, Lopes C, Barros H. Food hypersensitivity in Portuguese adults. Eur J Clin Nutr. 2004;58(12):1621-5. doi: 10.1038/sj.ejcn.1602017.

- 15. Gaspar Â, Santos N, Faria E, Pereira AM, Gomes E, Câmara R, et al. Anaphylaxis in children and adolescents: The Portuguese Anaphylaxis Registry. Sampson H, ed. Pediatr Allergy Immunol. 2021;32(6):1278-86. doi: 10.1111/pai.13511.
- Padarath S, Gerritsen S, Mackay S. Nutritional Aspects of Commercially Available Complementary Foods in New Zealand Supermarkets. Nutrients. 2020;12(10):2980. doi: 10.3390/nu12102980.
- 17. Beauregard JL, Bates M, Cogswell ME, Nelson JM, Hamner HC. Nutrient Content of Squeeze Pouch Foods for Infants and Toddlers Sold in the United States in 2015. Nutrients. 2019;11(7):1689. doi: 10.3390/nu11071689.
- Marais NC, Christofides NJ, Erzse A, Hofman KJ. Evidence for high sugar content of baby foods in South Africa. S Afr Med J. 2019;109(5):328. doi: 10.7196/SAMJ.2019.v109i5.13314.
- Santos M, Matias F, Loureiro I, Rito AI, Castanheira I, Bento A, et al. Commercial Baby Foods Aimed at Children up to 36 Months: Are They a Matter of Concern? Foods. 2022;11(10):1424. doi: 10.3390/foods11101424.
- Netting MJ, Gold MS, Palmer DJ. Low allergen content of commercial baby foods. J Paediatr Child Health. 2020;56(10):1613-7. doi: 10.1111/jpc.15047.
- Crawley H, Westland S. Baby Foods in the UK. A Review of Commercially Produced Jars and Pouches of Baby Foods Marketed in the UK. 2017.
- 22. WHO Guideline for Complementary Feeding of Infants and Young Children 6-23 Months of Age. World Health Organization; 2023.
- Smith PK. Do advanced glycation end-products cause food allergy? Curr Opin Allergy Clin Immunol. 2017;17(5):325-31. doi: 10.1097/ ACI.000000000000385.
- Paparo L, Coppola S, Nocerino R, Pisapia L, Picariello G, Cortese M, et al. How dietary advanced glycation end products could facilitate the occurrence of food allergy. J Allergy Clin Immunol. 2023:S0091674923015142. doi: 10.1016/j.jaci.2023.11.023.
- Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021;21(11):739-51. doi: 10.1038/s41577-021-00538-7.
- Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519(7541):92-6. doi: 10.1038/nature14232.
- National Institute of Statistics (INE) Human consumption of fruits per capita (kg/ inhab.) by fruit species; Annual - INE, Supply balances of vegetable products 1989/1990 - 2022/2023. Available at: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_base_ dados&contexto=bd&selTab=tab2. Last access date: 06/21/2024.

Jorge Sanchez¹, Margarita Velásquez², María Fernanda Ordoñez^{3,4}

Baricitinib for atopic dermatitis in real life: effectiveness, safety profile, and adherence

- ¹Group of Clinical and Experimental Allergy, Hospital "Alma Mater de Antioquia", University of Antioquia, Medellín, Colombia
- ²Dermatological Research Center, University of Antioquia, Medellín, Colombia
- ³Division of Dermatology, Department of Internal Medicine, Hospital "Militar Central", Bogotá, Colombia
- ⁴Atopic Dermatitis Clinic, Cayre Risk of Fracture, Bogotá, Colombia

Key words

Baricitinib; atopic dermatitis; real life; lifestyle; SCORAD.

Corresponding author

Jorge Sanchez Group of Clinical and Experimental Allergy Hospital "Alma Mater de Antioquia" University of Antioquia Cra 27, n37 B Sur 60, Medellín, Colombia ORCID: 0000-0001-6341-783X E-mail jorgem.sanchez@udea.edu.co

Doi

10.23822/EurAnnACI.1764-1489.362

To the Editor,

in the last decade new molecules has been offered for the treatment of severe atopic dermatitis (1, 2). Baricitinib has proved its efficacy in different clinical trials (2), but there is lacking information in real life (3, 4) and little has been studied on aspects such as adherence, tolerance, and the time needed to evaluate the clinical response before considering continuing or changing therapy. In this study we present new information in real life about baricitinib in atopic dermatitis.

Twenty-seven patients from two different centers were included and follow-up for one year. The ethics committee of the "Alma Mater de Antioquia" Hospital gave its approval for this study (protocol IN41-2022). In the first six months, a bimonthly follow-up was carried out to evaluate the response to therapy and adherence to treatment. At the beginning of the second semester, based in clinical control, patients continued or not with baricitinib, and follow-ups were carried out every 3 months. Due to local regulations, all patients who received baricitinib were over 18 years of age, had previously received at least one immunosuppressant without adequate clinical response or with serious adverse events, and had an Atopic Dermatitis score (SCORAD) greater than 20 points. Clinical response was defined as SCORAD ≤ 14 points and a change from baseline of one minimum clinically important difference of the SCORAD (≥ 9 points). Recruited patients with SCORAD less than 30 points had to have an Atopic Der-

matitis Control Test (ADCT) greater than 12 points and Dermatology Life Quality Index (DLQI) over 15 points. All patients received the same dose of Baricitinib: 4 mg/day. In those patients who did not achieve clinical response after six months, baricitinib was discontinued.

Table I presents the characteristics of the patients as well as the clinical changes during the first six months. A total of 14 mild adverse events were presented in 8 patients with a median duration of 14 days and none of them suspend the therapy. Thirteen (48.1%) of the patients achieved clinical control in all the scales used (DLQI, ADCT, SCORAD); clinical control was achieved in the first 2 months in 12 of the 13 patients. Among them, none experienced moderate or severe relapse during the one-year follow-up (**figure 1A**); additional 3 patients achieved pruritus control but low change in eczema extension and severity; 11 patients did not show improvement after six months with baricitinib, so it was suspended. No severe effects were reported. Adherence to treatment was calculated according to the number of days with

treatment *versus* number of days not taking it and expressed as a percentage [(Days treatment taken | total treatment days prescribed) × 100]. The median adherence was 86.7% and it was not significantly different between patients who had clinical response and patients without it.

When comparing the characteristics of patients who had clinical control *versus* those who did not have clinical control, we observed that those with a clinical response had a lower SCORAD at the beginning of the treatment (**figure 1B**). Other factors were not associated with differences in clinical response.

For some national health systems baricitinib is less expensive than other JAK-inhibitors or biologics. In our study, less than 50% of patients achieved an adequate response to treatment with Baricitinib but among these patients, control was nearly complete and in least than two months which is enough time to evaluate the clinical response.

According to our results, in general, adherence was high, perhaps due to the Hawthorne effect (5). Different factors affect adher-

Table I - General characteristics.

Characteristics	Baseline	After six months			
Age (mean, SD)	30.19 (9.14)	30.69 (9.75)			
Male sex	14 (51.9%)				
Atopy	27 (100%)				
AD onset in years (mean, SD)	3.3 (1.4)				
Eosinophils (mean, SD)	262 (302)	234 (332)			
Total IgE (mean, SD)	536 (53)	539 (58)			
DLQI (mean, SD)	17.7 (2.9)	12.7 (6.48) *			
DLQI ≤ 6 points	0	13			
ADCT (mean, SD)	16.4 (4.6)	8.89 (5.98) *			
ADCT ≤ 6 points	0	13			
Pruritus	8 (3.4)	5 (2.3) *			
SCORAD (mean, SD)	37.5 (11.71)	25 (17.2) *			
Patients SCORAD ≤ 20 points	0	13			
Patients SCORAD75%	N/A	13			
Patients SCORAD90%	N/A	10			
Adverse events	N/A	14			
Severe	N/A	0			
Gastrointestinal	N/A	4			
Respiratory infections	N/A	6			
Other	N/A	4			

Clinical and sociodemographic characteristics of patients before and after six months with baricitinib. Atopy was defined as one positive specific IgE. Pruritus was defined according to a subjective scale from 0 (no pruritus) to 10 (intense pruritus). SCORAD: Score atopic dermatitis; DLQI: Dermatology life quality index; ADCT: Atopic dermatitis control tests; N/A: No apply. *p < 0.05.

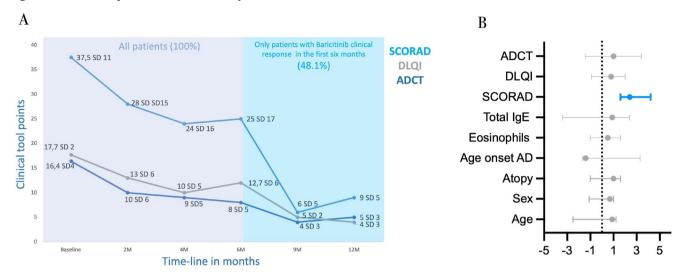


Figure 1 - Clinical response to Baricitinib and factors associated.

(A) Score obtained according to the SCORAD (Score atopic dermatitis), DLQI (Dermatology life quality index), and ADCT (Atopic dermatitis control test) scales. In the first six months, follow-up is presented for all patients (n = 27) but from month 6 onwards, only those who had clinical control with Baricitinib are presented; (B) Exploration of the variables associated with clinical control with Baricitinib according to odds ratio.

ence such as patient education, support systems, and socio-economic status. In our study, none of these factors seemed to be associated with adherence failures, perhaps because the health system in Colombia covers the full cost of the therapy. However, 5 of the 13 patients who had clinical control forgot sometimes to take the medication, indicating that treatment tolerates some interruptions. AD has a major impact on mental health, unfortunately we did not assess this aspect in the study. Including additional measures to evaluate the psychological and emotional well-being of patients would provide a more holistic assessment of the treatment's effects. Finally, as an exploratory analysis, we observed that the most appropriate profile to start baricitinib therapy are patients with SCORAD lower than 40 points. Although severe skin pruritus is one of the most important clinical targets of JAK-inhibitors, it did not appear to be a determining factor to predict clinical response with baricitinib.

In conclusion, this study provides valuable insights into the use of baricitinib for severe atopic dermatitis. While the findings are promising, such as the rapid clinical response and good adherence, significant limitations, including no control group, a small sample size, and lack of long-term data, should be noted. Future research should focus on larger, more diverse populations and include detailed analyses of cost-effectiveness and long-term outcomes. This study lays the foundation for understanding the

potential role of baricitinib in treating severe atopic dermatitis and emphasizes the need for ongoing investigation.

Fundings

This article was funded by the Clinical and Experimental Allergology Group, "Alma Mater de Antioquia" Hospital, University of Antioquia, (Medellín, Colombia).

Contributions

JS: conceptualization. MV, MFO: writing – original draft, writing – review & editing, investigation, formal analysis.

Conflict of interests

JS, MV, and MFO have been advisors and speakers for Lilly, Pfizer, Sanofi, and Abbvie laboratories. The conflict of interests are not related to this work.

Acknowledgements

We thank the clinical research team of the Hospital "Alma mater de Antioquia" for their logistical collaboration, and the Division of Dermatology, Department of Internal Medicine, Hospital "Militar Central for their medical collaboration.

- Shah SA, Mitra N, Margolis DJ, Wan J. Heterogeneity in cutaneous infection prevalence and frequency by timing of childhood atopic dermatitis onset. J Am Acad Dermatol. 2024;90(5):1039-42. doi: 10.1016/j.jaad.2023.12.051.
- Kim RW, Lam M, Abuabara K, Simpson EL, Drucker AM. Targeted Systemic Therapies for Adults with Atopic Dermatitis: Selecting from Biologics and JAK Inhibitors. Am J Clin Dermatol. 2024;25(2):179-93. doi: 10.1007/s40257-023-00837-w.
- Reguiai Z, Becherel PA, Perrot JL, Fougerousse AC, Begon E, Poreaux C, et al. Impact of Baricitinib on Patients' Quality of Life
- after One Year of Treatment for Atopic Dermatitis in Real-World Practice: Results of the Observatory of Chronic Inflammatory Skin Diseases Registry. Acta Derm Venereol. 2023;103:adv14153. doi: 10.2340/actadv.v103.14153.
- 4. Rogner D, Biedermann T, Lauffer F. Treatment of Atopic Dermatitis with Baricitinib: First Real-life Experience. Acta Derm Venereol. 2022;102:adv00677. doi: 10.2340/actadv.v102.1088.
- 5. McCambridge J, Witton J, Elbourne DR. Systematic review of the Hawthorne effect: new concepts are needed to study research participation effects. J Clin Epidemiol. 2014;67(3):267-77. doi: 10.1016/j. jclinepi.2013.08.015.

Monica Colque-Bayona¹, Daniel Laorden², David Romero², Santiago Quirce^{1,3,4}, Javier Domínguez-Ortega^{1,3,4}

Anti-IL5/5R in the treatment of chronic eosinophilic pneumonia and severe asthma

- ¹Department of Allergy, La Paz University Hospital, Madrid, Spain
- ²Department of Pulmonology, La Paz University Hospital, Madrid, Spain
- ³La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- ⁴CIBER of Respiratory Diseases (CIBERES), Madrid, Spain

KEY WORDS

Chronic eosinophilic pneumonia; severe asthma; mepolizumab; reslizumab; benralizumab.

Corresponding author

Monica Colque-Bayona
Department of Allergy
La Paz University Hospital
Paseo de la Castellana 261
Madrid, Spain 28046
ORCID: 0000-0003-1534-5573
E-mail: monica.colque@salud.madrid.org

Doi

10.23822/EurAnnACI.1764-1489.323

To the Editor,

chronic eosinophilic pneumonia (CEP) is a rare disease among the diffuse parenchymal lung diseases characterized by significant eosinophil infiltrations in the pulmonary parenchyma and the alveolar spaces (1). Patients with CEP frequently have history of asthma and atopy, therefore it may occur predominantly in patients who are prone to develop a T-helper-2 response. Currently, it diagnosis is based on the presence of respiratory symptoms for at least two weeks, chest radiologic findings (diffuse pulmonary alveolar consolidation and/or ground glass opacities, especially with peripheral predominance), the presence of eosinophilia at bronchoalveolar lavage (BAL) and/or peripheral blood (a BAL cell count differential > 25% or blood eosinophils $> 1,000/\mu L$), and the absence of other known causes of eosinophilic lung diseases (2). Although oral corticosteroids (OCS) are the mainstay treatment with usually a good respond, relapses frequently occur while decreasing or stopping OCS, thus requiring prolonged treatment with the risk of long-term side effects (1, 2). In last years, the knowledge of eosinophil biology has led to the development of several biologics targeting eosinophils such as biologics targeting interleukin (IL)-5 (mepolizumab and reslizumab) and IL-5 receptor (benralizumab) (3). These therapies have revolutionized glucocorticoid sparing treatment of eosinophilic respiratory diseases (4). Due that eosinophils play a primary role in the pathophysiologic of CEP and the association with asthma (2), eosinophil-specific biologics may be alternative candidates for the treatment. Recent data in case series (5-7) and case reports (8-10) show their potential benefit effect in this disease. Here, we present an additional case series of patients with diagnosis of CEP and concomitant severe eosinophilic asthma treated successfully with anti-IL-5/5R biologics.

We retrospectively analyzed the clinical records of patients with diagnosis of CEP and severe asthma treated with anti IL5/5R therapy in our department from 2010 to 2023. We evaluated the effect of biologic therapy on the daily dose of OCS, number of annual asthma exacerbations, asthma control assessed by

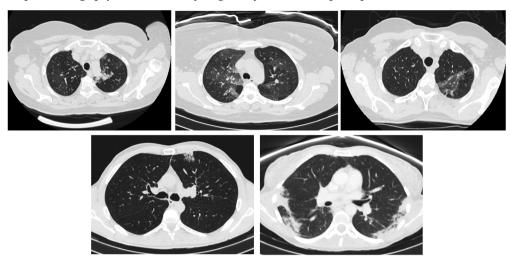


Figure 1 - Chest computed tomography at the moment of diagnosis of chronic eosinophilic pneumonia.

the Asthma Control Test (ACT) and peripheral blood eosinophil counts at baseline and after one year of treatment.

Six patients were included (five women and one man). The mean age at diagnosis of CEP was 39.6 years (from 21 to 49 years). Five had concomitant diagnosis of severe uncontrolled asthma and allergic rhinoconjunctivitis, and one asthma-chronic obstructive pulmonary disease overlap. Two were former smokers. CEP was diagnosed based on the criteria described before (2) and other causes of eosinophilic lung diseases were excluded. Five patients had compatible findings on the lung computed tomography (CT) (figure 1) with marked eosinophilia at BAL in three patients (mean of 38% of eosinophils, range 30-49%) and the other two patients presented peripheral blood eosinophilia (1,730 and 4,400/µL). One patient was diagnosed by transbronchial lung biopsy. In this patient we could not collect the CT images nor the laboratory data at the moment of the diagnosis. In addition, all the patients underwent screening tests for eosinophilic granulomatosis with polyangiitis (EGPA) and had negative results for proteinase 3 antineutrophil cytoplasmic antibodies (PR-3 ANCA) and myeloperoxidase antineutrophil cytoplasmic antibodies (MPO-ANCA). Anti-IL-5/IL5R were principally prescribed because of severe uncontrolled asthma and the prolonged glucocorticoid treatment. Prior the biologic therapy, all patients were treated with at least high-dose inhaled corticosteroids plus long-acting β -agonists with poor control of their asthma (mean of ACT 16.6, range from 16 to 18). Five patients were receiving OCS with a mean daily dose of prednisone of 12 mg/day (from to 5-30 mg). One patient presented avascular necrosis of the femoral head and shoulder and developed diabetes related to corticosteroid treatment.

Reslizumab was prescribed in two patients (200 and 337 mg every 4 weeks according to the patient's weight), two received mepo-

lizumab (100 mg every 4 weeks) and two benralizumab (30 mg every 8 weeks). One of them had received omalizumab previously. One patient reported headaches associated to mepolizumab. No other adverse effects of biologics were recorded.

After one year of treatment with anti IL5/IL5R, among the five patients with OCS, three could discontinued the corticosteroid treatment; in one patient the daily dose of prednisone was dropped from 30 to 10 mg, and one continued with the same dose (5 mg/day). All patients had reached asthma control according to the ACT (mean 23.3, range 21 to 25) and we found a decrease in the mean of asthma annual rate of exacerbations (from 2.5 to 0.6). Regarding the blood eosinophils count, we found a decrease from a mean 1,316.6/µL (400-3,970/µL) to 60/µL (0-150/µL). No relapses of CEP have been observed since the introduction of anti IL-5/5R. No changes in the spirometry values had been observed. The summary of our findings is shown in **table I**.

Although there is clear evidence of the efficacy and safety of anti-IL-5/ IL5R in severe asthma that led their approval for its treatment by the European Medicines Agency (EMA) and the Food and Drug Administration (FDA), there is still scarce data of their efficacy on CEP. In the present study, we found that anti-eosinophil biologics were effective in the treatment of both CEP and severe asthma, especially in terms of reducing or discontinuing the OCS therapy and controlling both diseases decreasing asthma exacerbations and CEP relapses. Recently published case series described similar findings: Delcors *et al.* (5) reported a case of series of 29 patients treated with mepolizumab and benrazilumab; after a median duration of 13 months, no CEP relapse was reported, the median annual rate of severe asthma exacerbations decreased from 0.15 to 0, and 72% of the patients were eventually weaned from oral corticosteroids. Moreover, Brenard *et al.* (6) reported a case series of

Table I - Clinical and laborator	y outcomes after one year oj	^c Anti-IL5/5R treatment.
---	------------------------------	-------------------------------------

	All patients (n = 6)	Reslizumab (n = 2)	Mepolizumab (n = 2)	Benralizumab (n = 2)
Blood eosinophil count (cells/µL) Prior treatment After one year	1,316.6 (400-3,970) 60 (0-150)	1,180 (520-1,840) 65 (60-70)	585 (530-640) 105 (150-60)	2,185 (400-3,970) 10 (0-20)
ACT (mean, range) Prior treatment After one year	16.6 (16-18) 23.3 (21-25)	(16-17) (21-24)	(16-17) (23-25)	(16-18) (23-24)
Number of annual asthma exacerbations (mean, range) Prior treatment After one year	2.5 (1-5) 0.6 (0-3)	(1-3) 0	(3-5) (1-3)	(1-2) 0
Patients treated with OCS (n) Prior treatment After one year	5 2	1 0	2 1	2
Daily dose of prednisone mg/día (mean, range) Prior treatment After one year	12 (5-30) 7.5 (5-10)	5 0	(5-10) 5	30 10

ACT: Asthma Control Test; FEV1: forced expiratory volume in 1 second; FVC: forced vital capacity; OCS: oral corticosteroids.

10 patients with CEP treated with mepolizumab, after a median follow-up of 9 months, the treatment was associated with a significant annual rate of relapse (from 0.8 to 0), a lower consumption of corticosteroids (tapered from 5 to 0 mg) and also a remission of lung lesions on follow-up high resolution CT.

In conclusion, based on our findings and the previous literature, anti-IL-5/5R can be a safe and effective treatment in steroid-dependent patients with CEP and severe asthma.

Fundings

None.

Contributions

All authors: conceptualization, data curation, formal analysis, methodology, writing - original draft, writing - review & editing.

Conflict of interests

The authors declare that they have no conflict of interests.

- Suzuki Y, Suda T. Eosinophilic pneumonia: A review of the previous literature, causes, diagnosis, and management. Allergol Int. 2019;68(4):413-9. doi: 10.1016/j.alit.2019.05.006.
- Cottin V. Eosinophilic Lung Diseases. Immunol Allergy Clin North Am. 2023;43(2):289-322. doi: 10.1016/j.iac.2023.01.002.

- 3. Pitlick MM, Li JT, Pongdee T. Current and emerging biologic therapies targeting eosinophilic disorders. World Allergy Organ J. 2022;15(8):100676. doi: 10.1016/j.waojou.2022.100676.
- Bernstein JS, Wechsler ME. Eosinophilic respiratory disorders and the impact of biologics. Curr Opin Pulm Med. 2023;29(3):202-8. doi: 10.1097/MCP.0000000000000951.
- Delcros Q, Taillé C, Vallée A, Brun AL, Chenivesse C, Couture P, et al. Targeting IL-5/5R for the treatment of idiopathic chronic eosinophilic pneumonia. J Allergy Clin Immunol Pract. 2023;11(4):1317-9. el. doi: 10.1016/j.jaip.2022.12.022.
- Brenard E, Pilette C, Dahlqvist C, Colinet B, Schleich F, Roufosse F, et al. Real-Life Study of Mepolizumab in Idiopathic Chronic Eosinophilic Pneumonia. Lung. 2020;198(2):355-60. doi: 10.1007/ s00408-020-00336-3.
- Sato H, Miyata Y, Inoue H, Tanaka A, Sagara H. Efficacy of Mepolizumab Extended Interval Dosing for 2 Asthmatic Patients With Chronic Eosinophilic Pneumonia. J Investig Allergol Clin Immunol. 2021;31(5):459-60. doi: 10.18176/jiaci.0671.
- 8. Shimizu Y, Kurosawa M, Sutoh Y, Sutoh E. Long-Term Treatment With Anti-Interleukin 5 Antibodies in a Patient with Chronic Eosinophilic Pneumonia. J Investig Allergol Clin Immunol. 2020;30(2):154-5. doi: 10.18176/jiaci.0468.
- Angeletti G, Mazzolini M, Rocca A. Two years follow-up of relapsing eosinophilic pneumonia with concomitant severe asthma successfully treated with benralizumab: A case report and brief review of the literature. Respir Med Case Rep. 2023;41:101795. doi: 10.1016/j.rmcr.2022.101795.
- Izhakian S, Pertzov B, Rosengarten D, Kramer MR. Successful treatment of acute relapse of chronic eosinophilic pneumonia with benralizumab and without corticosteroids: A case report. World J Clin Cases. 2022;10(18):6105-9. doi: 10.12998/wjcc.v10.i18.6105.

clienti.codifa@lswr.it shop.edraspa.it

European Annals of Allergy and Clinical Immunology

- 6 print issues per year
- full access to www.eurannallergyimm.com, featuring all current and archived issues

European Annals of Allergy and Clinical Immunology

is a bimonthly peer-reviewed publication

- The official Journal of the "Associazione Allergologi Immunologi Italiani Territoriali e Ospedalieri" (Italian Association of Hospital Allergists and Immunologists AAIITO) and the "Sociedade Portuguesa de Alergologia e Immunologia Clinica" (Portuguese Society of Allergology and Clinical Immunology SPAIC)
- indexed in PubMed and Scopus
- collects reviews, original works concerning etiology, diagnosis and treatment of allergic and immunological disorders

