REVIEW

Efficacy comparison of combined montelukast-antihistamine and montelukast monotherapy in allergic rhinitis: a meta-analysis of randomized controlled trials

Ji-Sun Kim¹, Gulnaz Stybayeva², Se Hwan Hwang³

¹Department of Otolaryngology-Head and Neck Surgery, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea

²Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester (MN), U.S.A.

³Department of Otolaryngology-Head and Neck Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea

Summary

Background. Combination therapy with montelukast and oral antihistamines is commonly used in allergic rhinitis (AR), but its comparative benefit over montelukast monotherapy remains unclear. This meta-analysis aimed to evaluate the efficacy of combination therapy compared to monotherapy, with a focus on symptom-specific outcomes. Methods. A comprehensive search of PubMed, SCOPUS, Embase, Web of Science, and Cochrane databases was conducted through April 2025. We systematically reviewed randomized controlled trials comparing montelukast combined with oral antihistamines to montelukast monotherapy in patients with AR. Outcomes included total symptom scores, Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ) scores, and individual symptom domains. Pooled effects were analyzed using standardized mean differences (SMDs) with 95% confidence intervals (CIs). Results. Thirteen RCTs enrolling 2,950 patients were identified.

with limited benefit for nighttime symptoms (SMD = 0.10; 95%CI -0.01 to 0.21) or RQLQ scores (SMD = 0.11; 95%CI -0.05 to 0.26). In subgroup analysis, all combinations with loratadine, desloratadine, or levocetirizine showed greater efficacy than monotherapy in improving daytime symptoms. However, only the levocetirizine-based combination demonstrated a significant benefit for nighttime symptoms. When analyzed by individual symptoms, the levocetirizine combination resulted in significantly better outcomes than monotherapy, improving sneezing, nasal itching, nasal obstruction, and rhinorrhea. **Conclusions.** Montelukast combined with antihistamines improves daytime and individual nasal symptoms more effectively than monotherapy. However, the effectiveness of each drug combination varied by symptom domain. These findings may assist clinicians in selecting appropriate combination regimens based on individual symptom patterns.

Key words

Montelukast; allergic rhinitis; antihistamine; drug combinations; meta-analysis.

Impact statement

This meta-analysis provides evidence that symptom-specific efficacy of montelukast–antihistamine combinations may inform personalized pharmacologic strategies in allergic rhinitis management.

Introduction

Allergic rhinitis (AR) is a common chronic inflammatory disorder of the upper respiratory tract, characterized by symptoms such as nasal congestion, rhinorrhea, sneezing, and nasal itching. It affects approximately 10–30% of the global population, with rising prevalence in both developed and developing countries (1). Beyond its physical symptoms, AR imposes a significant burden on patients' quality of life, including impaired sleep, decreased cognitive performance, and reduced work productivity (2). Despite the availability of various treatment options, many patients with AR remain poorly controlled due to suboptimal symptom relief and limited adherence, contributing to a substantial economic burden (3).

Current pharmacological options for AR include oral and intranasal antihistamines, intranasal corticosteroids, leukotriene receptor antagonists (LTRAs), and decongestants. Among these, second-generation oral antihistamines—such as loratadine, desloratadine, and levocetirizine—are commonly used as first-line therapy due to their rapid onset of action and minimal sedative effects. According to the ARIA (Allergic Rhinitis and its Impact on Asthma) guidelines, these agents are recommended as the initial treatment for mild intermittent AR, given their favorable safety profile and symptom-relieving efficacy (4). Montelukast, a LTRA, is often used as an alternative or adjunct, particularly in patients with poor response to antihistamines or comorbid asthma (5). The recent International Consensus Statement on Allergy and Rhinology supports that LTRAs are consistently more effective than placebo and may provide additional benefits for specific symptom domains such as nighttime control. They are not generally recommended as first-line therapy but may be considered in selected patients, particularly in combination strategies to enhance efficacy (6).

The rationale for combining montelukast with antihistamines is based on their complementary mechanisms. Antihistamines target histamine-mediated responses, while montelukast acts on leukotriene pathways, offering broader symptom control (7). This pathophysiological basis supports their potential synergistic effects, especially in patients with

moderate-to-severe AR or those with partial response to monotherapy (8). In clinical practice, such combination therapy is frequently employed, although supporting evidence has been inconsistent. While several randomized controlled trials (RCTs) have evaluated the efficacy of combination therapy compared to monotherapy, the results remain inconsistent (9, 10). Importantly, limited number of meta-analyses have comprehensively addressed this specific comparison, leaving a gap in synthesized evidence that could inform guideline recommendations.

The objective of this meta-analysis is to systematically evaluate the efficacy of combination therapy with montelukast and antihistamines compared to montelukast monotherapy in patients with AR. Primary outcomes include changes in total symptom scores and quality of life measures, while secondary analyses focus on individual symptom domains. This study also aims to identify whether certain antihistamine combinations provide greater benefit, thereby offering a clearer understanding of the clinical value of combination therapy and guiding optimal treatment strategies for AR.

Materials and Methods

Search strategy

A comprehensive literature search was conducted in PubMed, Embase, MEDLINE, Scopus, and the Cochrane Library through April 2025. The search strategy was developed in collaboration with an experienced medical librarian specialized in clinical research synthesis. Studies were eligible if they compared combination therapy with montelukast and oral antihistamines versus montelukast monotherapy in patients with AR, with outcomes assessing symptom scores or health-related quality of life. Two reviewers independently screened titles and abstracts, assessed full texts, and resolved discrepancies through consensus with a third reviewer. The study flow is shown in Figure 1. We registered study protocol on Open Science Framework (https://osf.io/4sedu/).

Data extraction and risk of bias assessment

Data extraction was performed using a standardized form, capturing study characteristics including patient demographics, treatment allocation, and outcome measures (11, 12). Extracted data included changes from baseline to post-treatment in individual nasal symptoms (sneezing, itching, nasal congestion, and rhinorrhea), eye symptoms, total daytime and nighttime symptom scores, and Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ) scores. Outcomes were compared between combination therapy groups (montelukast plus loratadine, levocetirizine, or desloratadine) and monotherapy controls (montelukast alone) to assess the added benefit of combination treatment. Risk of bias for each included randomized controlled trial was evaluated using the Cochrane Risk of Bias 2.0 tool (13).

Statistical analysis

Statistical analyses were performed using R version 4.3.1 (R Foundation for Statistical Computing, Vienna, Austria). Outcomes were pooled using standardized mean differences (SMDs) to account for variations in measurement scales across studies. Heterogeneity was assessed using Cochran's Q and the I² statistic. Publication bias was evaluated through funnel plots and Egger's regression test.

Subgroup analyses were conducted to investigate sources of heterogeneity and to examine potential effect modifiers

Results

We ultimately analyzed 2950 subjects evaluated in 13 studies (7, 10, 14-24). The studies are summarized in Table 1 and the Individual randomized controlled trial methodological quality are listed in Supplementary Table 1.

Direct Comparison of Changes in Total Symptom Scores and Quality of Life Between Combination Therapy and Montelukast Monotherapy

Combination therapy demonstrated a statistically significant improvement in daytime nasal and eye symptoms compared to montelukast alone (SMD [95% CI] = 0.25 [0.15 to 0.35], $I^2 = 51.2\%$) (Figure 2). However, no significant differences were observed in nighttime symptoms (SMD [95% CI] = 0.10 [-0.01 to 0.21], $I^2 = 0\%$) or RQLQ scores (SMD [95% CI] = 0.11 [-0.05 to 0.26], $I^2 = 0\%$) (Table 2).

Subgroup analyses based on the type of antihistamine revealed that the combination of levocetirizine and montelukast consistently provided greater benefit in daytime symptoms (SMD [95% CI] = 0.42 [0.03 to 0.81], $I^2 = 66.9\%$) and nighttime symptoms (SMD [95% CI] = 0.22 [0.05 to 0.39], $I^2 = 0\%$) (Table 2). In contrast, loratadine in combination with montelukast showed a more modest benefit in daytime symptoms (SMD [95% CI] = 0.18 [0.07 to 0.30], $I^2 = 0\%$) with no significant effects on nighttime symptoms or quality of life. Desloratadine combined with montelukast showed a relatively large effect size for daytime symptoms (SMD [95% CI] = 0.83 [0.18 to 1.48]), although based on a single study. Subgroup analyses indicated that levocetirizine—montelukast combinations showed numerically greater benefit in both daytime and nighttime symptoms. However, these trends should be interpreted with caution, as formal tests for subgroup differences did not reach statistical significance (Table 2).

Direct Comparison of Changes in Individual Symptom Scores Between Combination Therapy and Montelukast Monotherapy

Combination therapy with montelukast and antihistamines was generally more effective than montelukast monotherapy in relieving most nasal symptoms, including sneezing, itching, obstruction, and rhinorrhea (Figure 3). Considerable heterogeneity (I² > 50%) was observed in several outcomes. The analysis was based on pooled data without stratification by the type of antihistamine. Subgroup comparisons were performed to explore differences in treatment response across antihistamines (Table 3).

For sneezing, combination therapy demonstrated a clear benefit over monotherapy (SMD = 0.54 [0.23 to 0.84], $I^2 = 62.4\%$). The largest effect was observed in the desloratedine group (SMD = 0.72 [0.23 to 1.21], $I^2 = 0\%$), followed by levocetirizine (SMD = 0.66 [0.14 to 1.18], $I^2 = 66.2\%$). Loratedine-based therapy did not show a statistically significant improvement (SMD = 0.18 [-0.01 to 0.38]).

In nasal itching, the overall effect of combination therapy was modest (SMD = 0.23 [0.09 to 0.37], $I^2 = 0\%$). Deslorated (SMD = 0.53 [0.05 to 1.01]) and levocetirizine (SMD = 0.32 [0.09 to 0.55]) both showed meaningful improvements, while lorated ine did not result in a significant effect (SMD = 0.12 [-0.07 to 0.31]).

Nasal obstruction improved significantly with combination therapy overall (SMD = 0.58 [0.21 to 0.95], $I^2 = 79.2\%$). Desloratadine (SMD = 0.71 [0.25 to 1.16], $I^2 = 28.0\%$) and levocetirizine (SMD = 0.68 [0.09 to 1.27], $I^2 = 82.8\%$) showed substantial benefit. In contrast, loratadine showed no significant improvement (SMD = 0.02 [-0.17 to 0.21]).

For rhinorrhea, a moderate pooled effect was observed (SMD = 0.42 [0.09 to 0.83], I^2 = 85.5%), with only the levocetirizine subgroup demonstrating a significant improvement (SMD = 0.70 [0.12 to 1.29], I^2 = 87.9%). Desloratadine (SMD = 0.00 [-0.47 to 0.48]) and loratadine (SMD = 0.06 [-0.14 to 0.25]) showed no meaningful effect. Leave-one-out sensitivity analyses indicated that heterogeneity was largely driven by a few trials with large effect sizes, particularly *Kim 2024* and *Ciebiada 2006*. Excluding *Kim 2024* reduced heterogeneity to 60.3% (SMD = 0.23 [-0.02 to 0.47]), and excluding *Ciebiada 2006* yielded SMD = 0.31 [-0.04 to 0.65] with I^2 = 84.8%. When both studies were removed, the pooled effect remained modest but consistent (SMD = 0.21 [0.05 to 0.37]) with I^2 = 0%, suggesting that the overall direction of effect is robust while the magnitude is influenced by small but influential studies.

Eye symptoms had the largest pooled effect size (SMD = 1.04 [-0.18 to 2.26], $I^2 = 97.7\%$), though the wide confidence interval and high heterogeneity limit the interpretability of this result.

The strongest apparent benefit was observed in the levocetirizine group (SMD = 1.84 [-0.11 to 3.79], $I^2 = 96.0\%$), while desloratedine (SMD = 0.42 [-0.21 to 1.05]) and loratedine (SMD = 0.08 [-0.11 to 0.28]) were not associated with significant improvement.

Discussion

In this meta-analysis, combination therapy with montelukast and antihistamines demonstrated superior efficacy compared to montelukast monotherapy in relieving several symptom domains associated with AR. The combination approach was particularly effective in improving daytime symptoms, with a statistically significant pooled effect size. However, it showed limited benefit for nighttime symptoms and health-related quality of life, as measured by the RQLQ. Among the antihistamines analyzed, levocetirizine-based combination therapy consistently provided the most favorable outcomes for both daytime and nighttime symptom scores. Desloratadine also showed a relatively large effect on daytime symptoms, although this finding was derived from a single study. In contrast, loratadine-based combinations did not produce statistically meaningful improvements in any symptom domain.

Cysteinyl leukotrienes (CysLTs) play a key role in the pathophysiology of AR by promoting vascular permeability, mucus secretion, and eosinophilic infiltration in the nasal mucosa (25). Montelukast, a selective CysLT1 receptor antagonist, has demonstrated efficacy in nasal obstruction by reducing mucosal edema, suppress sneezing and itching through inhibition of sensory nerve stimulation, and improve mucociliary clearance by decreasing mucus viscosity (5, 26). Chervinsky et al. demonstrated that montelukast monotherapy significantly improved daytime nasal symptoms in patients with seasonal AR, particularly during periods of high pollen exposure (27). Their multi-seasonal analysis supported the responsiveness of montelukast to allergen load, reinforcing its efficacy as a monotherapy.

Histamine also plays a key role in the early-phase response of AR (28). Upon allergen

exposure, activated mast cells rapidly release histamine, which binds to H₁ receptors in the nasal mucosa (29). These effects occur within minutes, inducing sneezing, itching, and rhinorrhea, and are central to the immediate hypersensitivity reaction observed in AR (28). Second-generation oral antihistamines selectively block peripheral H₁ receptors and are widely recommended as first-line agents for patients with mild to moderate AR (4). Their rapid onset and low sedative potential make them appropriate for daily use. However, their therapeutic benefit is largely limited to histamine-mediated symptoms, with minimal efficacy against nasal obstruction and other manifestations driven by leukotrienes, cytokines, and other inflammatory mediators (30). Moreover, antihistamines exert little effect on the late-phase inflammatory response, which contributes to persistent symptoms and reduced treatment responsiveness in some patients (31). In this context, combination therapy with leukotriene receptor antagonists has been proposed to enhance therapeutic efficacy by targeting multiple inflammatory pathways (22, 24, 32).

Although the overall difference between montelukast—antihistamine combination therapy and montelukast monotherapy was small and RQLQ improvement was not significant, our analysis identified modest improvements in individual symptoms such as sneezing and nasal obstruction.

These results are consistent with the modest role of montelukast and with recent evidence showing that intranasal treatments, particularly corticosteroids, are superior to oral therapies (33). However, intranasal corticosteroids are not feasible for all patients because of contraindications, side effects, or poor adherence. In such cases, oral therapy remains a relevant alternative. Our findings therefore suggest that adding an antihistamine to montelukast may provide incremental, symptom-specific benefits, particularly for patients whose predominant complaints are not adequately controlled with monotherapy. RQLQ showed limited responsiveness in our results, which may be because the questionnaire covers broader domains such as emotional well-being and daily functioning. These aspects may require longer treatment durations or stronger anti-inflammatory effects to show measurable improvement. Among the evaluated antihistamines, levocetirizine in combination with

montelukast consistently showed statistically significant benefits across multiple studies, suggesting that this regimen may offer more reliable symptom control during both daytime and nighttime.

Although desloratedine demonstrated the largest effect size for daytime symptoms, this finding was derived from a single study and should therefore be interpreted with caution until replicated in further trials.

In our analysis, desloratadine-based combinations showed the greatest improvements in sneezing, itching, and nasal obstruction, while levocetirizine-based combinations demonstrated more consistent and statistically robust effects, particularly for rhinorrhea. However, interpretation of the rhinorrhea outcome requires caution because of substantial heterogeneity. A small-scale study by Ciebiada 2006, which reported an unusually large effect and had concerns regarding risk of bias, disproportionately increased variability. In addition, the pediatric population in Kim 2024 may have contributed to differences compared with adult studies. These findings suggest that although the overall direction of effect is consistent, the magnitude should be interpreted cautiously. Taken together, these results suggest that the choice of antihistamine in combination therapy may influence both the extent and profile of symptom relief. Analyzing outcomes by individual symptoms provides insights that composite scores may overlook. Since patients often present with distinct symptom patterns, identifying the most appropriate regimen for each profile may support more personalized treatment strategies.

This study has several limitations. Individual patient-level variables, particularly baseline symptom severity, were not consistently reported across studies. Because treatment response in AR varies with initial severity, the absence of severity-based stratification limits the interpretability of pooled effect sizes and may have led to over- or underestimation in subgroups. In addition, most included studies had relatively short treatment durations, generally between two and four weeks, which may not be sufficient to capture meaningful changes in quality of life. Some subgroup findings, such as the large effect size observed with desloratadine, were derived from a single trial

and should be interpreted with caution until replicated. In addition, most RQoL data were derived from SAR studies, with very limited evidence available for PAR, so the potential impact of rhinitis subtype on quality-of-life outcomes could not be assessed. This distinction may be clinically relevant, since patients with PAR often experience more persistent symptoms than those with SAR. Collectively, these limitations highlight the need for larger and stratified populations, longer follow-up, and standardized reporting of baseline severity. In particular, stratification by predominant symptom profiles will be essential to clarify whether certain AR phenotypes derive greater benefit from montelukast—antihistamine combination therapy.

Conclusion

This meta-analysis indicates that combining montelukast with oral antihistamines improves daytime and individual nasal symptoms more effectively than montelukast alone. Levocetirizine-based combinations showed the most consistent benefits, including nighttime symptom relief. However, treatment effects varied by symptom and antihistamine type. These findings support a personalized, symptom-targeted approach to treatment selection. Future studies should stratify patients by predominant symptoms or AR phenotypes to optimize combination strategies and better assess long-term impacts on quality of life.

We found modest but statistically significant improvements in individual symptoms such as sneezing and nasal obstruction, even though these may not always represent large clinical gains.

This has clinical relevance because not all patients are able or willing to use intranasal corticosteroids due to contraindications, side effects, or poor adherence. For these patients, oral treatment remains an important option. In this setting, adding an antihistamine to montelukast may provide incremental and symptom-specific relief for those whose predominant complaints are not adequately controlled with monotherapy

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)(2022R1F1A1066232). The sponsors had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Authors' Contributions:

Conceptualization: JSK, GS and SHH. Methodology: JSK and SHH. Software: SHH. Validation: SHH. Formal analysis: JSK and SHH. Investigation: JSK and SHH. Data curation: JSK and SHH. Writing—original draft preparation: JSK and SHH. Writing—review and editing: JSK and SHH. Visualization: JSK and SHH. Supervision: JSK, GS and SHH.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Pawankar R, Canonica GW, Holgate ST, Lockey RF, Blaiss MS. WAO white book on allergy. Milwaukee, WI: World Allergy Organization. 2011;3:156-7.
- 2. Meltzer EO, Blaiss MS, Derebery MJ, Mahr TA, Gordon BR, Sheth KK, et al. Burden of allergic rhinitis: results from the Pediatric Allergies in America survey. Journal of Allergy and Clinical Immunology. 2009;124(3):S43-S70.
- 3. Meltzer EO, Bukstein DA. The economic impact of allergic rhinitis and current guidelines for treatment. Annals of Allergy, Asthma & Immunology. 2011;106(2):S12-S6.
- 4. Brożek JL, Bousquet J, Agache I, Agarwal A, Bachert C, Bosnic-Anticevich S, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines—2016 revision. Journal of Allergy and Clinical Immunology. 2017;140(4):950-8.
- 5. Rodrigo GJ, Yañez A. The role of antileukotriene therapy in seasonal allergic rhinitis: a systematic review of randomized trials. Ann Allergy Asthma Immunol. 2006;96(6):779-86. doi: 10.1016/s1081-1206(10)61339-7.
- 6. Wise SK, Damask C, Roland LT, Ebert C, Levy JM, Lin S, et al. International consensus statement on allergy and rhinology: allergic rhinitis–2023. International forum of allergy & rhinology. 13. Wiley Online Library, 2023. pp. 293-859.
- 7. Ciebiada M, Górska-Ciebiada M, DuBuske LM, Górski P. Montelukast with desloratadine or levocetirizine for the treatment of persistent allergic rhinitis. Annals of allergy, asthma & immunology. 2006;97(5):664-71.
- 8. Meltzer EO, Malmstrom K, Lu S, Prenner BM, Wei LX, Weinstein SF, et al. Concomitant montelukast and loratadine as treatment for seasonal allergic rhinitis: a randomized, placebocontrolled clinical trial. Journal of allergy and clinical immunology. 2000;105(5):917-22.
- 9. Kurowski M, Kuna P, Gorski P. Montelukast plus cetirizine in the prophylactic treatment of seasonal allergic rhinitis: influence on clinical symptoms and nasal allergic inflammation. Allergy.

2004;59(3):280-8.

- 10. Nayak AS, Philip G, Lu S, Malice MP, Reiss TF. Efficacy and tolerability of montelukast alone or in combination with loratedine in seasonal allergic rhinitis: a multicenter, randomized, double-blind, placebo-controlled trial performed in the fall. Ann Allergy Asthma Immunol. 2002;88(6):592-600. doi: 10.1016/s1081-1206(10)61891-1.
- 11. Kim DH, Jang DW, Hwang SH. Dose-Related Effects and Bleeding Risk of Ketorolac in Pediatric Tonsillectomy. Otolaryngol Head Neck Surg. 2025;172(3):821-32. doi: 10.1002/ohn.1057.
- 12. Kim DH, Stybayeva G, Hwang SH. Comparative Effectiveness of Dupilumab Versus Sinus Surgery for Chronic Rhinosinusitis With Polyps: Systematic Review and a Meta-Analysis. Am J Rhinol Allergy. 2024;38(6):428-36. doi: 10.1177/19458924241272978.
- 13. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. Bmj. 2019;366:14898. doi: 10.1136/bmj.14898.
- 14. Meltzer EO, Malmstrom K, Lu S, Prenner BM, Wei LX, Weinstein SF, et al. Concomitant montelukast and loratadine as treatment for seasonal allergic rhinitis: a randomized, placebocontrolled clinical trial. J Allergy Clin Immunol. 2000;105(5):917-22. doi: 10.1067/mai.2000.106040.
- 15. Ciebiada M, Ciebiada MG, Kmiecik T, DuBuske LM, Gorski P. Quality of life in patients with persistent allergic rhinitis treated with montelukast alone or in combination with levocetirizine or desloratedine. J Investig Allergol Clin Immunol. 2008;18(5):343-9.
- 16. Lu S, Malice MP, Dass SB, Reiss TF. Clinical studies of combination montelukast and lorated in patients with seasonal allergic rhinitis. J Asthma. 2009;46(9):878-83. doi: 10.3109/02770900903104540.
- 17. Andhale S, Goel HC, Nayak S. Comparison of Effect of Levocetirizine or Montelukast Alone and in Combination on Symptoms of Allergic Rhinitis. Indian J Chest Dis Allied Sci.

2016;58(2):103-5.

- 18. Kim MK, Lee SY, Park HS, Yoon HJ, Kim SH, Cho YJ, et al. A Randomized, Multicenter, Double-blind, Phase III Study to Evaluate the Efficacy on Allergic Rhinitis and Safety of a Combination Therapy of Montelukast and Levocetirizine in Patients With Asthma and Allergic Rhinitis. Clin Ther. 2018;40(7):1096-107.e1. doi: 10.1016/j.clinthera.2018.04.021.
- 19. Panchal S, Patil S, Barkate H. Evaluation of efficacy and safety of montelukast and levocetirizine FDC tablet compared to montelukast and levocetirizine tablet in patients with seasonal allergic rhinitis: a randomized, double blind, multicentre, phase III trial. International Journal of Otorhinolaryngology and Head and Neck Surgery. 2020;7:83. doi: 10.18203/issn.2454-5929.ijohns20205625.
- 20. Pullerits T, Praks L, Ristioja V, Lötvall J. Comparison of a nasal glucocorticoid, antileukotriene, and a combination of antileukotriene and antihistamine in the treatment of seasonal allergic rhinitis. J Allergy Clin Immunol. 2002;109(6):949-55. doi: 10.1067/mai.2002.124467.
- 21. Ghanbari N, Eftekhari K, Samadzadeh-Mamaghani M, Sedighiyan M, Diaz DN, Shafiei A. Comparative Efficacy of Mometasone Nasal Spray Combined with Different Doses of Desloratadine, and Montelukast in Childhood Allergic Rhinitis: A Randomized Clinical Trial. Iran J Allergy Asthma Immunol. 2024;23(4):366-73. doi: 10.18502/ijaai.v23i4.16211.
- 22. Kim CK, Hwang Y, Song DJ, Yu J, Sohn MH, Park YM, et al. Efficacy and Safety of Montelukast+Levocetirizine Combination Therapy Compared to Montelukast Monotherapy for Allergic Rhinitis in Children. Allergy Asthma Immunol Res. 2024;16(6):652-67. doi: 10.4168/aair.2024.16.6.652.
- 23. Lee YJ, Ma HS, Callaway Z, Kim CK. Montelukast treatment response according to eosinophil-derived neurotoxin level in children with allergic rhinitis. J Asthma. 2024;61(12):1611-8. doi: 10.1080/02770903.2024.2370002.
- 24. Ciebiada M, Gorska-Ciebiada M, Barylski M, Kmiecik T, Gorski P. Use of montelukast

- alone or in combination with desloratadine or levocetirizine in patients with persistent allergic rhinitis. American journal of rhinology & allergy. 2011;25(1):e1-e6.
- 25. Nayak A, Langdon RB. Montelukast in the treatment of allergic rhinitis: an evidence-based review. Drugs. 2007;67(6):887-901. doi: 10.2165/00003495-200767060-00005.
- 26. Cingi C, Ozlugedik S. Effects of montelukast on quality of life in patients with persistent allergic rhinitis. Otolaryngol Head Neck Surg. 2010;142(5):654-8. doi: 10.1016/j.otohns.2010.01.016.
- 27. Chervinsky P, Philip G, Malice M-P, Bardelas J, Nayak A, Marchal J-L, et al. Montelukast for treating fall allergic rhinitis: effect of pollen exposure in 3 studies. Annals of Allergy, Asthma & Immunology. 2004;92(3):367-73.
- 28. Simons FER, Simons KJ. Histamine and H1-antihistamines: celebrating a century of progress. Journal of Allergy and Clinical Immunology. 2011;128(6):1139-50. e4.
- 29. Enerbäck L, Karlsson G, Pipkorn U. Nasal mast cell response to natural allergen exposure. Int Arch Allergy Appl Immunol. 1989;88(1-2):209-11. doi: 10.1159/000234788.
- 30. Peters-Golden M, Henderson Jr WR. Leukotrienes. New England Journal of Medicine. 2007;357(18):1841-54.
- 31. Canonica GW, Blaiss M. Antihistaminic, anti-inflammatory, and antiallergic properties of the nonsedating second-generation antihistamine desloratedine: a review of the evidence. World Allergy Organization Journal. 2011;4:47-53.
- 32. Cingi C, Gunhan K, Gage-White L, Unlu H. Efficacy of leukotriene antagonists as concomitant therapy in allergic rhinitis. The Laryngoscope. 2010;120(9):1718-23.
- 33. Torres MI, Gil-Mata S, Bognanni A, Ferreira-da-Silva R, Yepes-Nuñez JJ, Lourenço-Silva N, et al. Intranasal Versus Oral Treatments for Allergic Rhinitis: A Systematic Review With Meta-Analysis. J Allergy Clin Immunol Pract. 2024;12(12):3404-18. doi: 10.1016/j.jaip.2024.09.001.

Table 1. Summary of the studies included in our meta-analysis.

		. Summary of the	Tot						
Stu dy	Y e a r	Study Type	al nu mb er	Age (y rs)	Country	Rhi nitis Ty pe	Treatment	Duration (w ks)	Outcomes
Me ltze r	2 0 0 0	Multicenter RCT with 5 parallel tr eatment groups (placebo-controlle d)	460	15- 75	USA	SAR	Montelukast (10/2 0 mg), loratadine 10 mg, combinati on (montelukast + loratadine), or pl acebo	2	Daytime nasal sy mptoms, Daytime eye symptoms, Nighttime nasal symptoms
Na yak	2 0 0 2	Multicenter doub le-blind RCT (placebo-controlle d)	758	15- 82	USA	SAR	Montelukast (10/2 0 mg), loratadine 10 mg, combinati on (montelukast + loratadine), or pl acebo	2	Daytime nasal sy mptoms, individu al nasal sympto ms, Daytime eye symptoms, Nigh ttime nasal symp toms, Rhinoconju nctivitis Quality- of-Life
Cie bia da	2 0 0 6	Double-blind, pla cebo-controlled crossover RCT	40	18- 65	Poland	PAR	Montelukast 10 m g, desloratadine 5 mg, combination, or placebo	6	Daytime nasal sy mptoms, individu al nasal sympto ms, Daytime eye symptoms
Cie bia da	2 0 0 8	Double-blind, pla cebo-controlled crossover RCT	40	18- 65	Poland	PAR	Montelukast 10 m g, desloratadine 5 mg, combination, or placebo Beclomethasone 2	6	Nighttime nasal symptoms, Rhino conjunctivitis Qu ality-of-Life
Lu (stu dy 1)	2 0 0 9	Phase 2 randomi zed parallel-group stu dy	402	15- 85	Belgium	SAR	00 μg, placebo, c ombination (monte lukast 10 mg + 1 oratadine 10 mg), montelukast 10 m g, or loratadine 1 0 mg	2	Daytime nasal sy mptoms
Lu (stu dy 2)	2 0 0 9	Phase 2 randomi zed parallel-group stu dy	476	15- 85	Belgium	SAR	Beclomethasone 2 00 µg (study 1 o nly), placebo, co mbination (montel ukast + loratadin e), montelukast, o r loratadine	2	Daytime nasal sy mptoms
Cie bia da	2 0 1 1	Double-blind, pla cebo-controlled, 2-arm crossover RCT	40	18- 65	Poland	PAR	Montelukast 10 m g, desloratadine 5 mg, combination (montelukast 10 mg + desloratadin e 5 mg), or place bo	6	individual nasal symptom
An dha le	2 0 1 6	Prospective RCT	75	15- 75	India	PAR	Montelukast 10 m g or combination (montelukast 10 mg + levocetirizin e 5 mg), or levoc etirizine 5mg alon	2	individual nasal symptoms, Dayti me eye symptom s
Ki m	2 0 1 8	Phase 3 multicen ter double-blind RCT	210	>15	Korea	Asth ma and AR	Montelukast 10 m g or combination (montelukast 10 mg + levocetiri zine 5 mg)	4	Daytime nasal sy mptoms, individu al nasal sympto ms, Nighttime na sal symptoms
Pan cha	2 0	Phase 3 multicen ter double-blind	186	18- 60	India	SAR	Montelukast 10 m g or combination	2	Daytime nasal sy mptoms,Nighttim

	_	D 000							
l	2	RCT					(montelukast 10		e nasal symptom
	1						mg + levocetirizin		s, Rhinoconjuncti
							e 5 mg), or levoc		vitis Quality-of-L
							etirizine 5mg alon		ife
							e 200		
	2	Double-blind, do					Fluticasone 200 μ		D (1)
Pul	2	uble-dummy, pla		1.5			g, montelukast 10		Daytime nasal sy
leri	0	cebo-controlled p	31	15-	Estonia	SAR	mg, combination	6	mptoms, Nightti
ts	2 2	arallel-group RC		50			(montelukast 10		me nasal sympto
	2	T					mg + loratadine 1		ms,
						1	0 mg), or placebo		
	2					mod	Desloratadine syru		D 4: 1
Gh	2			(1		erate	p (2.5–5 mg/day),		Daytime nasal sy
anb		Open-label RCT	45	6-1 4	Iran	to	montelukast 5 mg,	8	mptoms, individu
ari	2	-		4		seve	combination (des loratadine + mont		al nasal sympto
	4					re AR	elukast)		ms
						AK	elukasi)		Daytima nagal su
	2						Montelukast 5 mg		Daytime nasal sy
Ki	0	Open-label multi		6-1			or fixed-dose co		mptoms, individu al nasal sympto
m	2	center RCT	147	4	Korea	AR	mbination (montel	4	ms, nighttime na
111	4	center RC1		7			ukast 5 mg + lev		sal symptom sco
	7						ocetirizine 5 mg)		re
							Montelukast 5 mg		10
	2						or combination		
	0	Open-label rando		6-1			(montelukast 5 m		Daytime nasal sy
Lee	2 4	mized case-contr olled study	40	4 K	Korea	PAR	g + levocetirizine	4	mptoms
							5 mg) for 4 week		пришь
							S mg) for 4 week		
							S.		

RCT, randomized controlled trial; SAR, seasonal allergic rhinitis; PAR, perennial allergic rhinitis; AR, allergic rhinitis

Table 2. Subgroup analysis of changes in total symptom scores and Rhinoconjunctivitis

Quality of Life Questionnaire (RQLQ) scores between combination therapy

(montelukast with antihistamines) and montelukast monotherapy.

	Daytime	Nighttime	RQLQ
SMD	0.2498 [0.1478; 0.3518] $I^2 = 51.2\%$	$ \begin{array}{r} 0.1018 \\ [-0.0105; 0.2141] \\ I^2 = 0\% \end{array} $	$ \begin{array}{r} 0.1060 \\ [-0.0476; 0.2595] \\ I^2 = 0\% \end{array} $
Lora + Mon	N = 5 0.1806 [0.0659; 0.2953] $I^2 = 0\%$	N = 3 0.0037 [-0.1531; 0.1605] $I^2 = 0\%$	N = 1 0.0622 [-0.1315; 0.2559] NA
DesL+ Mon	N = 1 0.8319 [0.1832; 1.4806] NA	N = 1 -0.0204 [-0.6402; 0.5994] NA	N = 1 -0.1952 [-0.8166; 0.4262] NA
LevoC + Mon	$N = 5$ 0.4201 [0.0264; 0.8138] $I^{2} = 66.9\%$	N = 4 0.2216 [0.0549; 0.3883] $I^2 = 0\%$	$N = 2$ 0.2539 [-0.0218; 0.5295] $I^2 = 0\%$
P-value	0.0880	0.1623	0.3321

Abbreviations: Lora, loratadine; DesL, desloratadine; Levoc, levocetirizine; Mon, montelukast; SMD, standardized mean difference; CI, confidence interval; RQLQ, Rhinoconjunctivitis Quality of Life Questionnaire; NA, not applicable.

Table 3. Subgroup analysis of changes in individual nasal and eye symptom scores between combination therapy (montelukast with antihistamines) and montelukast monotherapy.

	Sneezing	Itching	Obstruction	Rhinorrhea	Eye symptoms
SMD	0.5381 [0.2317; 0.8445] $I^2 = 62.4\%$	$0.2313 [0.0900; 0.3727] I^2 = 0%$	0.5773 [0.2076; 0.9470] $I^2 = 79.2\%$	0.4199 [0.0092; 0.8306] $I^2 = 85.5\%$	$ \begin{array}{r} 1.0388 \\ [-0.1797; 2.2574] \\ I^2 = 97.7\% \end{array} $
Lora + Mon	N = 1 0.1838 [-0.0102; 0.3778] NA	N = 1 0.1195 [-0.0744; 0.3133] NA	N = 1 0.0199 [-0.1737; 0.2136] NA	N = 1 0.0551 [-0.1386; 0.2488] NA	N = 1 0.0831 [-0.1107; 0.2768] NA
DesL+ Mon	N = 2 0.7195 [0.2288; 1.2102] I2 =0%	$N = 2 \\ 0.5306 \\ [0.0481; 1.0131] \\ I^2 = 0\%$	$N = 3$ 0.7078 [0.2515; 1.1640] $I^{2} = 28.0\%$	$N = 2 \\ 0.0046 \\ [-0.4683; 0.4776] \\ I^2 = 0\%$	N = 1 0.4208 [-0.2065; 1.0481] NA
LevoC + Mon	$N = 3$ 0.6587 [0.1407; 1.1766] $I^{2} = 66.2\%$	N = 3 0.3197 [0.0912; 0.5482] I2 =0%	$N = 5$ 0.6779 [0.0900; 1.2658] $I^{2} = 82.8\%$	$N = 4$ 0.7043 [0.1183; 1.2902] $I^{2} = 87.9\%$	$N = 2$ 1.8391 [-0.1132; 3.7914] $I^{2} = 96.0\%$
P-value	0.0491	0.1890	0.0052	0.1083	0.1357

Abbreviations: Lora, loratadine; DesL, desloratadine; Levoc, levocetirizine; Mon, montelukast; SMD, standardized mean difference; CI, confidence interval; NA, not applicable.

Figure 1. Study selection diagram.

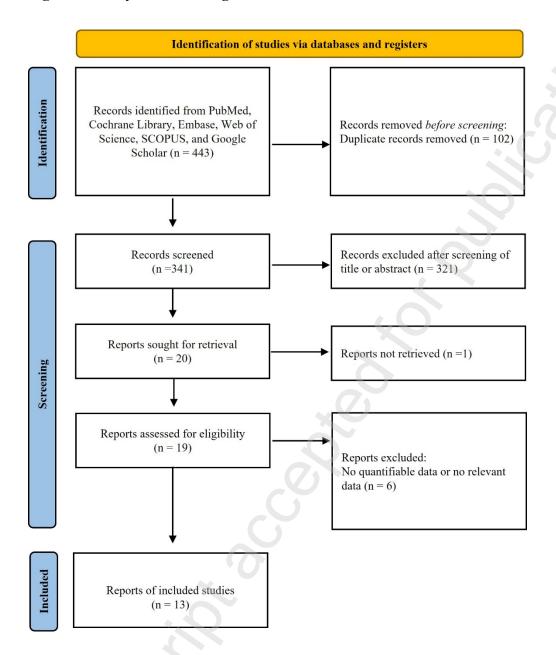


Figure 2. Direct comparison of changes in total symptom scores and Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ) scores between combination therapy and montelukast monotherapy. (A) Daytime total symptom score, (B) nighttime total symptom score, and (C) RQLQ score. Abbreviations: Lora, loratadine; DesL, desloratadine; Levoc, levocetirizine; Mon, montelukast; SMD, standardized mean difference; CI, confidence interval.

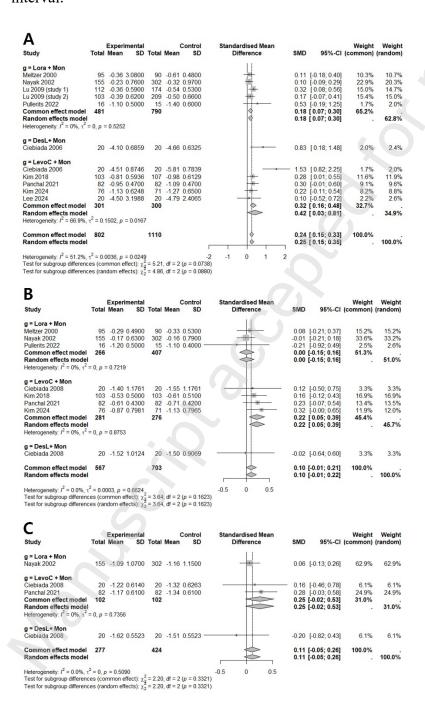
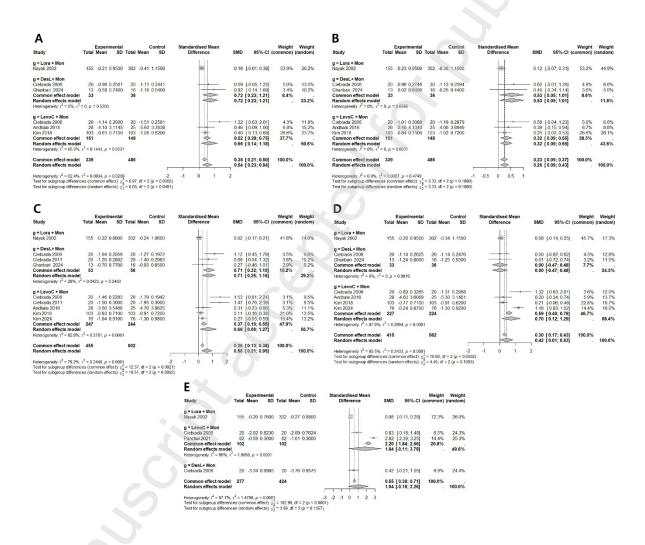



Figure 3. Direct comparison of changes in individual nasal symptom scores and eye symptom scores between combination therapy and montelukast monotherapy.

(A) Sneezing, (B) nasal itching, (C) nasal congestion, (D) rhinorrhea, and (E) eye symptoms. Abbreviations: Lora, loratadine; DesL, desloratadine; Levoc, levocetirizine; Mon, montelukast; SMD, standardized mean difference; CI, confidence interval.

Supplemental Table 1. Individual randomized controlled trial methodological quality.

Study	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data addressed	Free of selective reporting	Risk of Bias of randomized studies
Meltzer 2000	Yes	Yes	Yes	Yes	Yes	Yes	Risk of Bias (low)
Nayak 2002	Yes	Yes	Yes	Yes	Yes	Yes	Risk of Bias (low)
Ciebiada 2006	Yes	Yes	Yes	Unclear	Yes	Unclear	Risk of Bias (Unclear)
Ciebiada 2008	Yes	Yes	Yes	Unclear	Yes	Unclear	Risk of Bias (Unclear)
Lu 2009	Yes	Yes	Yes	Unclear	Yes	Yes	Risk of Bias (Unclear)
Ciebiada 2011	Yes	Unclear	Unclear	Unclear	Yes	Yes	Risk of Bias (Unclear)
Andhale 2016	Yes	Unclear	Unclear	Unclear	Yes	Yes	Risk of Bias (Unclear)
Kim 2018	Yes	Yes	Yes	Yes	Yes	Unclear	Risk of Bias (Unclear)
Panchal 2021	Yes	Yes	Yes	Yes	Yes	Yes	Risk of Bias (low)
Pullerits 2022	Yes	Yes	Yes	Yes	Yes	Yes	Risk of Bias (low)
Ghanbari 2024	Yes	Unclear	Unclear	Unclear	Yes	Yes	Risk of Bias (Unclear)
Kim 2024	Yes	Yes	Yes	Yes	Yes	Yes	Risk of Bias (low)
Lee 2024	Yes	Unclear	Unclear	Unclear	Yes	Yes	Risk of Bias (Unclear)