

European Annals of Allergy and Clinical Immunology

THE OFFICIAL JOURNAL OF AAIITO | ASSOCIAZIONE ALLERGOLOGI IMMUNOLOGI ITALIANI TERRITORIALI E OSPEDALIERI
THE OFFICIAL JOURNAL OF SPAIC | SOCIEDADE PORTUGUESA DE ALERGOLOGIA E IMUNOLOGIA CLINICA

2023 Journal Impact Factor: 2.6

Pollen-induced asthma: a unique model of mild to moderate asthma

Pollen-induced asthma: a specific pheno-endotype of disease?

Pollen-induced asthma: diagnostic and therapeutic implications

The role of basophil activation test in venom immunotherapy: comparative evaluation with specific IgE and skin prick tests, innovative approaches

Nasal challenge with ketorolac: utility and safety in clinical practice

Online food allergen labeling: is it a matter of concern?

European Annals of Allergy and Clinical Immunology

The online submission system

European Annals of Allergy and Clinical Immunology uses an online submission and review system for all papers evaluation.

Electronic submission allows a more efficient processing of manuscripts and offers Authors the option to track the progress of the review process whenever they need to. The link to the editorial system is http://eaaci.edmgr.com, it is also available on the Journal website: **www.eurannallergyimm.com**.

The Authors are invited to submit their manuscripts through the online editorial system; manuscripts sent by e-mail, post or fax are not considered for publication. All the Authors should read carefully the Guide for Authors before starting their submissions. Full information about the manuscript preparation are available on the Journal website. During submission, Authors will be first asked to select the article type, enter the manuscript title and provide Author information. Through a menu, a general topic area should be selected: these will help to match manuscripts to the best available editors and reviewers. Reviewers will access papers via the editorial system platform and will be invited and sent to it by email.

Full Authors Guidelines and the online Submission System link, are available on the Journal website:

www.eurannallergyimm.com

3,					
	Allergy and Clinical Immunology PDATE MY INFORMATION • JOURNAL OVERVIEW Not logged in.	©			
	NUSCRIPT • INSTRUCTIONS FOR AUTHORS • PRIVACY				
	European Annals of Allergy and Clinical Immunology AL OF AAITO ASSOCIAZIONE ITALIANA ALLERGOLOGI IMMUNOLOGI TERRITORIALI E OSPEDALIERI JOURNAL OF SPAIC SOCIEDADE PORTUGUESA DE ALERGOLOGIA E IMUNOLOGIA CLINICA				
Journal Home	Insert Special Character				
Instructions for Authors	Please Enter the Following				
EM Author Tutorial	Username: Password:				
EM Reviewer Tutorial					
System Requirements	Author Login Reviewer Login Editor Login Publisher Login				
File Formats					
Contact	Send Login Details Register Now Login Help				
	Software Copyright © 2021 Aries Systems Corporation. Aries Privacy Policy Data Use Privacy Policy				
European Annals "Allergy and Clinical Immunology First-time users					
1/2014 See a	Please click on the word "Register" in the navigation bar at the top of the page and enter the requested information. Upon successful registration, you will be sent an e-mail with instructions to verify your registration. NOTE: If you received an e-mail from us with an assigned user ID and password, DO NOT REGISTER AGAIN. Simply use that information to login. Usernames and passwords may be changed after registration (see instructions below).				
Market and the second s	Repeat users Please click the "Login" button from the menu above and proceed as appropriate.	-			
	Please click the Login button from the menu above and proceed as appropriate.				
	Authors				

submit your manuscript and track its progress through the system.

Please click the "Login" button from the menu above and login to the system as "Author." You may then

European Annals of Allergy and Clinical Immunology

www.eurannallergyimm.com

THE OFFICIAL JOURNAL OF AAIITO ASSOCIAZIONE ALLERGOLOGI IMMUNOLOGI ITALIANI TERRITORIALI E OSPEDALIERI THE OFFICIAL JOURNAL OF SPAIC

SOCIEDADE PORTUGUESA DE ALERGOLOGIA E IMUNOLOGIA CLINICA

EDITORS IN CHIEF

M. B. Bilò (Italy) P. Carreiro-Martins (Portugal)

DEPUTY EDITORS

R. Rodrigues Alves (Portugal) D. Villalta (Italy)

ASSOCIATE EDITORS

R. Asero (Italy) M. Branco Ferreira (Portugal)

L. Cecchi (Italy)

E. Scala (Italy)

D. Solé (Brasil)

G. Sturm (Austria)

EDITORIAL BOARD

I. Agache (Romania)

I. Annesi Maesano (France)

L. Antonicelli (Italy)

G. Azizi (Iran)

L.M. Borrego (Portugal)

K. Brockow (Germany)

S. Bavbek (Turkey)

E. Cichocka-Jarosz (Poland)

M. Cugno (Italy)

L. Delgado (Portugal)

P. Demoly (France)

G. D'Amato (Italy) S. Durham (UK)

M. Faber (Belgium)

M. Fernandez-Rivas (Spain)

J. Fonseca (Portugal)

ZS. Gao (China) G.P. Girolomoni (Italy)

E. Goudouris (Brasil)

A. Grumach (Brasil)

G. Kostantinou (Greece)

F. Levi-Shaffer (Israel)

M. Maurer (Germany)

L. Mayorga (Spain)

C. Micheletto (Italy)

M. Morais de Almeida (Portugal)

G. Moscato (Italy)

A. Musarra (Italy)

C. Nunes (Portugal)

M. Ollert (Lussemburgo)

P. Parronchi (Italy) G. Passalacqua (Italy)

E. Pedro (Portugal)

A. Perino (Italy)

O. Quercia (Italy)

A. Romano (Italy)

G. Scadding (UK)

A. Todo Bom (Portugal)

A. Tedeschi (Italy) R. van Ree (Netherland)

D. Villalta (Italy) S. Voltolini (Italy)

FOUNDERS

F. Bonifazi (Italy) A. Sabbah (France)

Editors in Chief and Managing Directors

Maria Beatrice Bilò P. Carreiro-Martins

Chief Executive Officer

Ludovico Baldessin

Editorial Coordinator

Barbara Moret

Publishing Editor

Jessica Guenzi

j.guenzi@lswr.it Ph. 0039 3491716011

EDRA SpA

Via G. Spadolini, 7

20141 Milano - Italy

Tel. 0039 (0)2-88184.1

Fax 0039 (0)2-88184.301

www.edizioniedra.it

"European Annals of Allergy and Clinical Immunology" registered at Tribunale di Milano - n. 336 on 22.10.2014

Sales

dircom@lswr.it

Subscription

abbonamentiedra@lswr.it

Ph. 0039 (0)2-88184.317

Italy subscription: 60 euro

World subscription: 85 euro

© 2025 Associazione Allergologi Immunologi Italiani Territoriali e Ospedalieri - AAIITO. Published by EDRA SpA. All rights reserved.

To read our Privacy Policy please visit www.edraspa.it/privacy

The contents of this Journal are indexed in PubMed, Scopus, Embase and Web of Science®

AAIITO

Associazione Allergologi Immunologi Italiani Territoriali e Ospedalieri

DIRECTORY BOARD

President Lorenzo Cecchi

Donatella Bignardi

Designated President Francesco Murzilli

Treasurer Oliviero Quercia

Vice President

Past President Riccardo Asero Members Paolo Borrelli Marcello Cilia Maurizio Franchini Francesco Madonna Giuseppe Pingitore Valerio Pravettoni

Giuseppe Valenti

Manuel Branco-Ferreira

Sociedade Portuguesa de Alergologia e Imunologia Clínica

DIRECTORY BOARD

President Ana Morête Past President

Vice Presidents

Frederico Regateiro

José Ferreira

João Marques

Treasurer Rodrigo Rodrigues Alves

Secretary-General Pedro Martins

Secretary-Adjunct Magna Correia

Members João Fonseca Ângela Gaspar Natacha Santos

Table of Contents

Editorial
Pollen-induced asthma: a unique model of mild to moderate asthma
Review
Pollen-induced asthma: a specific pheno-endotype of disease?
Position paper
Pollen-induced asthma: diagnostic and therapeutic implications
Original article
The role of basophil activation test in venom immunotherapy: comparative evaluation with specific IgE and skin prick tests, innovative approaches
Letters to the Editor
Nasal challenge with ketorolac: utility and safety in clinical practice
Online food allergen labeling: is it a matter of concern?

Adriano Vaghi¹, Maria Beatrice Bilò^{2,3}, Antonino Musarra⁴

Pollen-induced asthma: a unique model of mild to moderate asthma

¹Former Head of Pneumology and Chief of the Department of Medicine and Rehabilitation, Guido Salvini Hospital-ASST Rhodense, Garbagnate Milanese, Milan, Italy

- ²Allergy Unit, Department of Internal Medicine, University Hospital delle Marche, Ancona, Italy
- ³Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Italy
- ⁴Allergy Unit, Casa della Salute di Scilla, Scilla, Reggio Calabria, Italy

Doi

10.23822/EurAnnACI.1764-1489.409

Asthma is a disease that affects approximately 300 million people worldwide (1), and patients with mild asthma represent approximately 50-75% of this population (2).

Although patients with mild asthma constitute the vast majority of asthmatics, it is a subgroup still understudied and mistakenly considered to be easy to manage clinically. In fact, the so-called mild asthma remains a poorly researched clinical area despite its significant impact on the life of some patients, particularly because of the possibility of experiencing severe exacerbations (3). The definition of mild asthma itself is not consistently agreed upon by the main guidelines, and this lies in the assumption that the level of severity and frequency of symptoms is stable over time, and in the attempt to standardize the different characteristics of all patients under a single umbrella diagnosis (4).

Instead, it has been emphasized recently that the so-called mild asthma is in fact a heterogeneous condition characterized by different pathogenic and inflammatory mechanisms and clinical manifestations which may benefit from a differentiated and personalized management approach (5).

From this perspective, the works by Cecchi *et al.* on pollen-induced asthma (PIA) (6, 7), which has previously been classified as one of the clinical manifestations of mild-moderate asthma due to its long asymptomatic or paucisymptomatic periods, suggest that PIA might be considered as specific phenotype of asthma. Early phenotyping, even in non-severe asthma, has recently been highlighted as a useful tool to improve a "precision" approach to asthma therapy (8). PIA meets the criteria for defining a phenotype as outlined by Han *et al.* (9). An ongoing issue in defining phenotypes is ensuring their long-term stability and addressing potential overlaps or transitional features with other pheno-

types. However, several reviews and cohort studies indicate that this phenotype generally remains stable in the long-term (10, 11). The definition of PIA as a phenotype paves the way for a specific diagnostic algorithm, where T2 biomarkers, particularly FeNO, but also eosinophils, play a significant role as they can be considered endotypic diagnostic tests for PIA (6). The paper of Cecchi *et al.* also highlights how the diagnosis of PIA can be difficult outside the exposure period (6). In fact, the low expression of T2 markers and the low level of inflammation minimize the instability of the airway caliber and therefore the variability of FEV1, the positivity of the bronchodilation test and also the airways hyperreactivity, which are markers common to all asthma phenotypes (12).

The interpretation of PIA as a phenotype has important implications from a management point of view. The paper of Cecchi *et al.*, in fact, underlines how in these subjects the use of ACT as well as the use of cut-off values for the frequency of symptoms usually used to evaluate the "control domain" can be falsely reassuring when assessed outside the exposure periods and therefore lead to an underestimation of the patient's possible therapeutic needs during periods of maximum pollen exposure (6). The authors (6, 7) therefore suggest the adoption of a multidimensional "risk prediction" score that includes clinical history, symptoms, respiratory function, biomarkers, and comorbidities, in order to assess, even if indirectly, the patient's actual future risk and to personalize the therapeutic strategy.

Severe exacerbations and near-fatal asthma or fatal asthma episodes cannot be predicted in an individual subject because they are the result of a number of risk factors that add up and are potentiated in a variable way depending on the circumstances. However,

they can be preventable through the adoption of specific clinical tools such as an accurate risk stratification and the adoption of the maximum precautionary principle, which aims to adopt the more appropriate therapeutic approach (6, 7).

Therefore, adopting a proactive therapeutic strategy, when indicated, and a rapid step-up during the exposure season represents an advantageous strategy at a time when the patient is particularly vulnerable and when the transition from the onset of symptoms to a flare-up can be extremely rapid.

The aim of minimizing and preventing symptoms by adopting a proactive and non-reactive approach offers the additional advantage of avoiding phenomena of repeated instability of the caliber of the airways. Repeated bronchoconstriction episodes associated with allergic exposure favours crosstalk between the epithelium, inflammatory cells (eosinophils and mast cells) and smooth muscle cells which determines the activation and persistence of a T2 type inflammation and bronchial remodelling phenomena (12, 13). From a clinical point of view, pharmacodynamic and pharmacokinetic characteristics of the inhaled corticosteroid should maximize bronchoprotection (14), thus effectively attenuating the airways hyperreactivity, which represents an important factor that influences the subjective threshold for allergen-induced bronchoconstriction (8).

In conclusion, the works by Cecchi *et al.* (6, 7) provide us with a new management strategy for PIA and offer us indications on how to look beyond the appearances and to recognize in time the "slumbering fire" and to adopt the most appropriate therapeutic strategy to control asthma during the pollen exposure season and avoid severe exacerbations.

This new interpretation of PIA allows us to overcome the simplistic indication of a "one-size-fits-all therapy" and to initiate a "precision" approach based on a careful and individual stratification of "future risk".

References

- GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211-59. doi: 10.1016/S0140-6736(17)32154-2.
- Dusser D, Montani D, Chanez P, de Blic J, Delacourt C, Deschildre A, et al. Mild asthma: an expert review on epidemiology, clinical char-

- acteristics and treatment recommendations. Allergy. 2007;62(6):591-604. doi: 10.1111/j.1398-9995.2007.01394.x.
- Chapman KR. Impact of 'mild' asthma on health outcomes: findings of a systematic search of the literature. Respir Med. 2005;99(11):1350-62. doi: 10.1016/j.rmed.2005.03.020.
- Pavord ID, Beasley R, Agusti A, Anderson GP, Bel E, Brusselle G, et al. After asthma: redefining airways diseases. Lancet. 2018;391(10118):350-400. doi: 10.1016/S0140-6736(17)30879-6.
- Mohan A, Lugogo NL, Hanania NA, Reddel HK, Akuthota P, O'Byrne PM, et al. Questions in Mild Asthma: An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med. 2023;207(11):e77-e96. doi: 10.1164/rccm.202304-0642ST.
- Cecchi L, Musarra A, Jaubashi K, Marra AM, Martini M, Papia F, et al. Pollen-induced asthma: diagnostic and therapeutic implications. Eur Ann Allergy Clin Immunol. 2025;57(5):211-27. doi: 10.23822/ EurAnnACI.1764-1489.408.
- Cecchi L, Martini M, Jaubashi K, Marra AM, Musarra A, Papia F, et al. Pollen-induced asthma: a specific pheno-endotype of disease? Eur Ann Allergy Clin Immunol. 2025;57(5):197-210. doi: 10.23822/ EurAnnACI.1764-1489.403.
- Vaghi A, Incalzi RA, Barbaglia S, Bilò MB, Bini F, Carone M, et al. Expert opinion on gray areas in asthma management: A lesson from the innovative project "revolution in asthma" of the Italian thoracic society (AIPO-ITS). Clin Transl Allergy. 2025;15(2):e70037. doi: 10.1002/clt2.70037.
- Han MK, Agusti A, Calverley PM, Celli BR, Criner G, Curtis JL, et al. Chronic obstructive pulmonary disease phenotypes: the future of COPD. Am J Respir Crit Care Med. 2010;182(5):598-604. doi: 10.1164/rccm.200912-1843CC.
- Just J, Bourgoin-Heck M, Amat F. Clinical phenotypes in asthma during childhood. Clin Exp Allergy. 2017;47(7):848-55. doi: 10.1111/ cea.12939.
- 11. Tai A, Tran H, Roberts M, Clarke N, Gibson AM, Vidmar S, et al. Outcomes of childhood asthma to the age of 50 years. J Allergy Clin Immunol. 2014;133(6):1572-8.e3. doi: 10.1016/j. jaci.2013.12.1033.
- 12. Vaghi A, Bilò MB, Bini F, Cecchi L, Micheletto C, Musarra A. The added value of targeting airway hyperresponsiveness by blocking TSLP in the management of severe asthma. Eur Ann Allergy Clin Immunol. 2024. doi: 10.23822/EurAnnACI.1764-1489.376. Epub ahead of print.
- 13. Grainge CL, Lau LC, Ward JA, Dulay V, Lahiff G, Wilson S, et al. Effect of bronchoconstriction on airway remodeling in asthma. N Engl J Med. 2011;364(21):2006-15. doi: 10.1056/NEJMoa1014350.
- Daley-Yates P, Brealey N, Thomas S, Austin D, Shabbir S, Harrison T, Singh D, Barnes N. Therapeutic index of inhaled corticosteroids in asthma: A dose-response comparison on airway hyperresponsiveness and adrenal axis suppression. Br J Clin Pharmacol. 2021;87(2):483-93. doi: 10.1111/bcp.14406.

Lorenzo Cecchi¹, Matteo Martini^{2,3}, Kliljeda Jaubashi⁴, Alessandro Maria Marra⁵, Antonino Musarra⁶, Francesco Papia⁷, Adriano Vaghi⁸, Giuseppe Valenti⁷, Baoran Yang⁹, Maria Beatrice Bilò^{2,3}

Pollen-induced asthma: a specific pheno-endotype of disease?

- ¹Allergy and Immunology Unit, San Giovanni di Dio Hospital, USL Toscana Centro, Florence, Italy
- ²Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Italy
- ³Allergy Unit, Department of Internal Medicine, University Hospital delle Marche, Ancona, Italy
- ⁴Pulmonology Unit, ASST Santi Paolo Carlo, Milan, Italy
- ⁵Pulmonology Unit, ASST Rhodense, Garbagnate Milanese Hospital, Milan, Italy
- ⁶Allergy Unit, Casa della Salute di Scilla, Scilla, Reggio Calabria, Italy
- ⁷Allergology and Pulmonology Unit, Provincial Outpatient Center of Palermo, Palermo, Italy
- ⁸Former Head of Pneumology and Chief of the Department of Medicine and Rehabilitation, Guido Salvini Hospital-ASST Rhodense, Garbagnate Milanese, Milan, Italy
- ⁹Allergy Clinical Immunology and Rheumatology Unit, ASST Carlo Poma, Mantua, Italy

Key words

Asthma phenotype; pollen sensitization; pollen-induced airway inflammation; pollen concentration; allergic asthma.

Corresponding author

Lorenzo Cecchi Allergy and Immunology Unit San Giovanni di Dio Hospital USL Toscana centro via Torregalli 3 50143, Florence, Italy ORCID:0000-0002-0658-2449 E-mail: lorenzo.cecchi@unifi.it

Doi

10.23822/EurAnnACI.1764-1489.403

IMPACT STATEMENT

Pollen-induced asthma could be considered a specific phenotype. Pollen allergenicity depends not only on genetic and environmental factors, but also on the immunostimulatory components of the pollen matrix, that contribute to airway disease and may represent a defining feature of allergic asthma.

Summary

Asthma is a heterogeneous syndrome with a significant social and economic impact. While the knowledge of pheno-endotypes has advanced in severe asthma, little attention has been paid to the phenotypes of mild-moderate asthma. Along this line, a systematic review of the current literature on pollen-induced asthma was carried out, targeting the question whether it can be considered a specific phenotype of disease, with a focus on the role of pollen and its interplay with asthma.

This article reports the first part of the review, which covered background information on the multiple atmospheric and environmental factors affecting pollen concentration, the molecular bases of pollen-induced allergenicity and the pathogenic effector circuits that sustain and amplify inflammatory signals in response to allergens in sensitized subjects.

Introduction

Currently, asthma is no longer considered a single disease but a complex and heterogeneous syndrome that includes variable clinical presentations (phenotypes) and specific pathophysiological mechanisms (endotypes) (1-6).

Asthma impacts over 300 million individuals of all ages worldwide, with a high count of disabilities, and premature deaths (7). According to the Global Burden of Disease (GBD), asthma is the second leading cause of death among chronic respiratory diseases, with 457.01 thousand deaths in 2017 (7, 8). Asthma is often associated with various comorbidities, such as allergic rhinitis, nasal polyps, gastroesophageal reflux disease, obstructive sleep apnea, and anxiety, leading to increased morbidity and seriously affecting patients' quality of life (7).

Prevalence data on asthma are important for the understanding of the clinical and economic burden of the disease. However, the estimation of the epidemiology of asthma at global level is challenging, because of the complex nature of the disease and the lack of universally accepted case definition and tests that are confirmatory for asthma (9-11). The results from a systematic analysis of the literature, including data extracted from the Global Burden of Diseases, Injuries and Risk Factors Study 2019, show considerable variation across countries in the estimation of asthma prevalence, ranging from 1.43 to 11.25% (10). Regarding incidence, an increase was observed globally over the 30-year period 1990-2019, which occurred especially in Africa countries, with the number rising from 6,487,957.18 (95 %UI: 4,578,735.08-8,736,387.55) to 7,604,488.39 (95% UI: 5,428,024.98-10,177,808.25) (7, 12). Mortality for asthma in adolescent and young adults has exhibited a consistent downward trend over a period of 30 years, which may be linked to improved asthma management. However, areas with lower socio-demographic index have higher age-standardized mortality rates for asthma and deserve attention and priority support for medical resources.

Allergic asthma, usually defined as asthma associated with sensitization to by otherwise harmless environmental substances, i.e. allergens (as pollen, fungal spores, animal hair, house dust mite), is the most common asthma phenotype (13, 14). It is estimated that up to 80% of childhood asthma and more than 50% of adult asthma cases may have an allergic component (15, 16). Molecular studies by Kaur *et al.* (2019) also found that T2 signature, with high sensitization to allergens, increased airway and blood eosinophils and good response to ICS, concerns a significant proportion of adult patients with asthma (6). The average age of onset of allergic asthma is younger than that of nonallergic asthma (13). Although the spectrum of allergic asthma may vary from mild to severe, studies have reported that allergic *versus* nonallergic asthma is less severe (13).

Allergens are triggers for asthma symptoms and can lead to increased morbidity. The majority of children with asthma in US

are found to be sensitive to at least one indoor allergen (mite, molds, cat, dog) (17). Exposure to airborne pollen grains is known to be associated with asthma exacerbations and hospital admissions, especially in sensitized individuals and in children (18, 19). A prospective cohort study demonstrated that the sensitization to specific aeroallergens differentially impacts the risk of developing asthma and rhinitis. Specifically, sensitization to perennial allergens, to dog in particular, was associated with higher asthma risk as compared to seasonal allergens. Poly-sensitization at all ages was greatly associated with increased asthma risk (17, 20). In the last decade, important knowledge milestones have been achieved in the description of the pheno-endotypes of severe asthma, while little attention has been so far paid to the phenotypes of mild-moderate asthma (21). Indeed, while current clinical guidelines underline the importance of phenotyping severe asthma, to target the appropriate therapy (i.e., biologics), phenotyping mild-moderate asthma is not considered relevant, as the therapeutic approach recommended in these patients is considered to be independent of the phenotypes. In addition, the role of pollen, a major causal agent of respiratory allergy, in the complex interplay with asthma has not been completely elucidated. Along this line, the aim of our work is to investigate whether pollen-induced asthma (PIA) can be considered a specific phenotype in patients with mild-moderate asthma.

Materials and methods

A systematic review of the literature was conducted on Medline to identify English papers published up to March 31, 2024. Hand searching of references of interest was also performed within the selected studies. The search strategy included at least one keyword, in the title/abstract, for each of the following domains: pollen as a source of allergens (factors affecting pollen concentration, pollen size, immunologic mechanisms of response to airborne allergens), pollen-induced asthma (epidemiology, pollen-induced airway inflammation).

The research and selection of the studies were performed independently by five allergists, who collected and summarized the data from the studies. All the authors contributed to the definition of the research question and related keywords, and to the final selection of the studies to be included in the systematic review.

Results

Pollen as a source of allergens

Factors affecting pollen and allergen concentration

The concentration of pollens can be significantly affected by multiple atmospheric, environmental and botanical factors, thereby increasing the risk of respiratory symptoms and exacerbations in allergic pollen-driven asthma (18, 22-24).

Table I - Main factors affecting the concentration of pollen and allergens.

Atmospheric factors

Temperature

Humidity

UV radiation

Thunderstorms

Wind speed, distance, and direction (long-distance transport, air mass trajectories)

Pollution

Environmental and botanical factors

Soil contaminants

Microbiome

Tree biotic and abiotic stressors
(e.g., infections, other cultivated or native plants)
Urbanization and urban infrastructure topology
Tree urban planning (type and topology of trees)
Cultivar (plant variety that has been produced incultivation)

Land use

Most studies assessing the impact of pollen on respiratory health have used pollen count (number of airborne pollen grains) as a proxy for the concentration of airborne allergen. However, this may not reflect the true potential of allergens to exacerbate allergic respiratory symptoms, as subpollen particles (SPPs) carrying the allergens might come into play because of its size, small enough to reach the lower airways. The relationship between pollen count and pollen allergen levels (pollen potency, i.e., amount of allergen per pollen) has been shown to be nonlinear, as the amount of allergen released from grains may vary significantly according to factors such as geographic location, time of the year, plant growth, weather conditions (25-27). Altogether, these observations explain why allergy symptoms are experienced even on days with low pollen counts and suggest that pollen count may not be a reliable proxy of allergen exposure (27, 28). Notably, Fuerte et al. (2024) provided the first evidence that levels of airborne Phl p 5, an important grass pollen allergen, are more consistently associated with the occurrence of allergic and respiratory symptoms than pollen counts, after accounting for meteorological and environmental factors (27).

The main factors affecting the concentration of pollen and allergens are reported in **table I**.

Atmospheric factors

Temperature has been shown to be linked to an increase in sensitization frequency and allergic diseases. The emission of anthro-

pogenic carbon dioxide (CO₂) into the atmosphere and global warming can fertilize vegetation, enhancing the photosynthetic capacity and the growth of the plants, and are associated to an extended duration (mainly due to an earlier start) of pollen season and higher peak of pollen concentration (29, 30).

The effects of precipitation and humidity levels on pollen emission are complex (31, 32) and may depend on the specific pollen type (33). Heavy short-term precipitation significantly reduces atmospheric pollen concentrations, but, on the other hand, high humidity may induce hydration of pollen grains, sometimes followed by osmotic rupture, with generation of fragments of sub-micron diameter (0.5-2.5 µm) carrying allergens that can be dispersed by the wind into the atmosphere (31). However, the role of precipitation and humidity is rather complex to analyze, because there is not a standard definition of precipitation used across the studies and different scales of measuring precipitation are used (32). Under current climate change scenarios, heavy rainfall episodes, such as thunderstorms, cyclones and hurricanes, are expected to increase in intensity and frequency. Although mechanisms remain to be fully clarified, there is evidence in favor of a causal relationship between thunderstorms and epidemics of asthma attacks, including fatal and near-fatal (34). The most prominent hypotheses for "thunderstorm asthma" is that these events may concentrate aeroallergens at ground level to release respirable allergenic particles or other paucimicronic components after rupture of pollen grains by a combination of osmotic, mechanical, and electrical shock related to humidity, rainfall, wind gusts, and lightning strikes (34-37).

Wind speed and direction also play an important role in the process of lifting and transport of airborne pollen and allergens and in determining their load in the atmosphere (38, 39). The allergenic capacity of long-distance transport of pollen remains unclear. Pollen allergenicity could decrease or be lost altogether during flight in the higher layers of the atmosphere, where the action of factors such as air temperature, humidity and solar radiation on the pollen grains could impact on their ability to maintain allergenic potency (40). Air pollution may also aggravate the allergenicity of pollen (41-44) via different mechanisms: increase of pollen potency, damage of pollen surface with release of more allergens (45), change of its elemental composition, resulting in the release of more airborne SPPs. For instance, gaseous pollutants (nitrogen dioxide and ozone) have been shown to damage the pollen cell membranes in SPPs from plane tree pollen, leading to an increase in *Pla 3* allergen released into the atmosphere (46). When investigating these interactions between pollution and pollen, several variables should be considered, such as weather, urbanization, pollen species, type of pollutant, conditions of exposure, and individual susceptibility.

Environmental and botanical factors

Multiple atmospheric factors joint with environmental and botanical factors influence the concentration of allergens in pollen.

Increasing evidence indicates that the microbial composition of pollen (pollen microbiome) may affect its allergenicity (47, 48), as suggested by the observation that significantly higher amounts of major endotoxins synthesized by bacteria occur in high allergenic pollen in contrast to low allergenic pollen (48).

Pollen release and allergenicity may be also affected by soil pollutants and contaminants, such as cadmium (49) and indirectly by factors that influence plant growth and development, such as biotic stressors (living organisms like virus, bacteria, fungi and insects) and abiotic stressors (pollution, heat, cold, drought, salinity, high UV light, wounding, hypoxia) (50, 51).

Other environmental factors to be considered are land use (agriculture, pasture, plant varieties produced in cultivation by selective breeding), urbanization and urban infrastructure topology. Urban areas, where vegetation coverage is limited, may become "islands" of higher temperatures relative to outlying suburban or rural area ("urban heat island effect"), with possible impact on plant growth and pollen emission (52, 53). This may have implications in epidemiological studies, as large temperature differences between the pollen monitoring station and the study area could result in differences in pollen count and allergen content. In summary, pollen exposure and allergenicity are influenced by multiple specific and nonspecific environmental stressors (pollen exposome) and their consequences at organ and cell level are considered to play a role in the development, progression and exacerbation of pollen-induced asthma (28).

An important question concerns pollen threshold used in warning systems, that are intended to inform people of the risk of developing allergy symptoms. There is no consensus about which pollen concentrations provoke allergy symptoms (54). First of all, pollen traps are usually installed on roofs at a height of 15–20 m, but the pollen concentrations may differ from ground level, where exposure mainly occurs (55), and where it is highly variable both locally and spatially (56). Secondly, the clinical threshold of pollen is very variable as well. In fact, the relation between pollen/allergen exposure and symptom development is complex, and the dose threshold above which symptoms are experienced is influenced by factors such as individual sensitivity, sensitization, allergen content of pollen, age, geographical areas (54, 57).

Pollen and the airways: a matter of size

Experimental models aimed at predicting the relationship between aerosol particle size and lung penetration show that large particles, with aerodynamic diameters > 6 mm, mainly deposit at the oropharyngeal, whereas smaller particles penetrate the bronchiolar tree (58, 59).

Factors influencing pollen deposition in the airways

The deposition of pollens in the airways can be significantly affected by multiple factors (28, 31, 32). Besides the factors affecting pollen and allergen concentration reported in **table I**, pollen-specific characteristics such as size and morphology may also play a role.

Intact pollen grains are typically between 22 mm (birch) and 100 mm (corn) in size, thus too large to reach the lower airways where asthmatic reaction occur. For instance, grass pollen is present in the atmosphere both as whole grains (approx. 20 to 55 µm in diameter) and as smaller size fractions (< 2.5 µm) (60); ragweed pollen has a geometric diameter ranging between 16 and 27 µm (61), Parietaria pollen between 16-18 µm (62, 63). The question how the pollen grains may affect the respiratory system (the "size paradox") and the processes by which pollen allergens become airborne particles of respirable size have been investigated. As previously reported, during heavy precipitation or periods of high humidity pollen grains are hydrated and may undergo osmotic rupturing into SPPs that can penetrate deeper into the lung (28, 31). These data are supported by recent studies based on the measurement of chemical and biological markers demonstrating a significant increase in the SPPs with diameters 0.25-2.5 µm during thunderstorms and rain events in the pollen season, with peak concentrations occurring during convective thunderstorms with strong downdrafts, high rates of rainfall, electrical ions, and lightning (64, 65). Importantly, SPPs derived from pollen after osmotic shock have been shown to retain allergenicity (37). The main allergens of Parietaria Judaica (Par j 2), olive tree (Ole e 1) and grass pollen (Phl p 2 and Phl p 5) are detectable in SPPs and all of them are consistently associated with the epidemic of thunderstorm asthma (37). The impact of pollen morphology on its deposition in the airways has also been investigated. High-resolution imaging techniques have revealed pollen grain is commonly found in round, ellipsoidal, triangular, disc or bean-shape, with a smooth to spiky texture. Wind-pollinated plants produce lots of lightweight, smooth pollen, whereas the pollen of insect-pollinated plants is heavy and sticky. Experimental studies by Hassan (2011) have investigated the effect of size and surface morphology of pollen-shape carriers on drug delivery performance. The results might be extrapolated to the actual pollen morphology and showed that, at low flow rates, sparse surface asperity was associated to a significant improvement in the delivery of the drug fine particle fraction (the dispersed drug powder with diameter $\leq 5 \mu m$) as compared to pollen-shape carriers with dense surface asperity (66).

In the study by Inthavong *et al.* (2021), pollen particles exhibited higher drag coefficients (*i.e.*, resistance in a fluid environment, such as air or water) and lower particle density compared to aerodynamic equivalent spheres, suggesting that pollen has greater mobility in its aerodynamic flight and greater potential to penetrate the nasal cavity (67).

Site of inhaled pollen airway deposition

As the SPPs are several times smaller than intact pollen grains, they can evade filtration by the nasopharynx and penetrate deeper into the airways, provoking respiratory symptoms.

The association between grass pollen exposure and early markers of asthma exacerbations, such as lung function changes and

increase in airway inflammation, is limited, yet results from available studies suggest the evidence of a correlation (68). In a community-based cohort of 936 adult participants, increasing grass pollen concentrations were significantly associated to changes in FEF25%-75% and FEV₁/FVC ratio, measured 2-3 days after exposure, but not in FEV1, suggesting that the greatest impact might be on medium-sized to small airways (69). Modifications in lung function parameters (FEV1 and FVC) following pollen exposure have been reported also in children and in pollen sensitized adolescents (68).

The study by Nassikas *et al.* (2024) on a large cohort of 490 adolescents exposed to high concentrations of pollen reported a significant increase in airway inflammation (assessed by the measurement of FeNO levels), even in the absence of allergic sensitization and asthma (70).

The results from study on 85 asthmatic patients suggest that there are differences between house dust mite (HDM) mono-sensitized subjects and weed pollen mono-sensitized subjects, not only in airway wall thickness, but also the indices of small airway obstruction, reflecting airway remodeling (71). The results need to be confirmed on a larger population of patients.

Altogether, increasing evidence suggests that a large proportion of allergens is associated with particles of respirable size, either fragments of pollen, soluble allergen adsorbed to air pollutants of various origin or part of the dehiscing anther releases at the time of pollen shedding. These particles are small enough to deposit in the peripheral airways and induce inflammation and respiratory symptoms in predisposed subjects. Limited evidence shows effects on lung function parameters, reflecting a deposition on medium to small airways.

Mechanisms of innate and adaptive immune response to aeroallergen

The concept of the pollen matrix in allergic sensitization

Allergic asthma may involve various types of hypersensitivity reactions to allergens (antibody-mediated, immune cell-mediated, tissue-driven or linked to metabolic mechanisms), resulting in the development of symptoms (72). Classically, the mechanisms of allergies are associated with the type 1, IgE-dependent immune response, characterized by involvement of T helper 2 (T2) cells and production of cytokines including IL-4, IL-5, and IL-13. However, recent evidence shows endotypes of allergic diseases related to T1 or T3-driven activation pathways (72).

Up to now, 987 different allergens have been officially described, of which 195 are registered as plant-derived airborne allergens (https://www.allergen.org).

The key question is why only some environmental proteins cause allergic sensitization and others do not. The molecular bases of allergenicity, *i.e.*, the capacity of certain molecules to induce type 2 inflammation and specific IgE antibodies, are not fully under-

stood. Results from epidemiological and experimental studies support the notion that allergic sensitization is not only dependent on the genetics of the host and environmental factors, but also on intrinsic features of the allergenic source itself, specifically the composition of the pollen matrix (73-80).

The intrinsic and extrinsic compartment of the pollen matrix

Pollen allergens are embedded in a complex and heterogeneous matrix composed of a various bioactive molecule that are co-delivered during the allergic sensitization. The pollen matrix can be divided into two compartments, an intrinsic part consisting of compounds inherent to the pollen (proteins, metabolites, lipids, carbohydrates) and an extrinsic fraction, that includes viruses, aerosols and particles from air pollutants and a pollen-linked microbiome (73, 81-87). Together these components of the matrix provide a specific context for the allergen and are determinant of T2 sensitization (**figure 1**).

Specifically, the initiation of allergic sensitization to pollen is likely to occur via distinct molecular mechanisms, involving pollen species-specific immune adjuvants that may contribute to the generation of a pro-inflammatory microenvironment to favor T2 polarization. Indeed, experimental studies have shown that several purified allergens were lacking inherent sensitizing potential, supporting the role of pollen-derived components as key players in the initiation of the inflammatory allergic response in predisposed subjects (73, 74, 82, 88).

Pollen grains are rich in lipids displaying immunomodulatory effects (74). For instance, in sensitized individuals, but not in healthy controls, cypress pollen-derived phospholipids were shown to be presented to T cells by major histocompatibility complex (MHC)-related molecules on dendritic cells, an interaction causing T cell proliferation and secretion of IL-4 (playing a key role in the initiation of sensitization) and IFNy (73, 83, 84, 89). Further evidence comes from human studies with olive pollen and *in vitro* murine models with birch pollen, showing that pollen lipids activate invariant natural killer T cells by upregulating CD1d expression on dendritic cells (90, 91).

Regarding the extrinsic compartment of the matrix, the pollen microbiota, whose composition is variable and specific for each pollen species (47, 92), seems to play a role in allergenic inflammation. In fact, besides intrinsic pollen-derived lipids, microbial lipids constitute a source of immunomodulators and act as strong adjuvant of the sensitization process (83, 87).

The influence of plant viral infection on the sensitizing potential of pollen is still largely unknown. A pilot study on a small sample (n = 15) of subjects with a history of seasonal allergic rhino-conjunctivitis enrolled outside the pollen season observed that virus-induced modifications in components of grass pollen have the potential to alter its allergenic potency, as assessed by skin testing (85). The results suggest that virus infection of grasses deserves consideration as a factor in pollen-induced allergic disease.

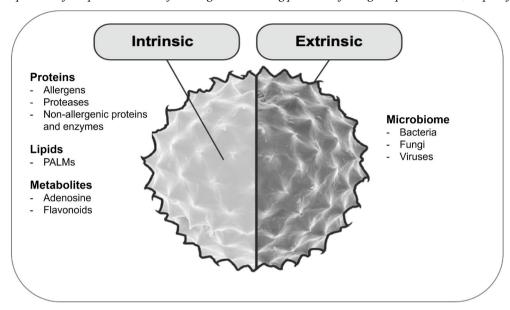


Figure 1 - The composition of the pollen matrix influencing the sensitizing potential of allergenic pollen source (adapted from ref. 73).

Additionally, air pollutants, such as diesel exhaust particles, ozone, carbon dioxide and nitrogen oxides, may influence the composition of the pollen matrix as well as of the pollen microbiota, displaying an assistive role in the development of the allergic inflammation (41-43, 93, 94). In this regard, a correlation between exposure to atmospheric pollutants and the content of allergens and immunostimulatory compounds in pollen was reported (95, 96).

The role of epithelium in the initiation of the sensitization process Increasing evidence suggests that an epithelial dysfunction, coupled with inherent properties of environmental allergens, can be responsible for the inflammatory response (97, 98).

Epithelial cells are endowed with a series of specialized pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) and protease activated receptors (PARs), which are required to provide first defense mechanisms towards pathogens. In atopic individuals, upon encounter with the epithelium, the pollen releases allergens and various matrix bioactive molecules that cause the disruption of the epithelial tight junctions, enabling the transportation of allergens across the membrane (81, 99-101), the activation of PRRs, the release of epithelial cytokines, like thymic stromal lymphopoietin (TSLP), IL-25, IL-33, and various pro-inflammatory cytokines (IL-8, IL-1, IL-6, TNFα). In turn, all these molecules activate the dendritic cell network and other innate immune cells, such as basophils and type 2 innate lymphoid cells, that drive pollen-induced T2 inflammation (88, 102-105). In this context, evidence is emerging on the epithelial cytokine TSLP as a critical player in the development and progression of allergy and asthma (106). TSLP is positioned at the early phase of the inflammatory cascade, therefore, its inhibition could simultaneously suppress multiple pathways of inflammation. In allergic asthma, TSLP promotes the differentiation of T2 lymphocytes secreting T2 cytokines targeting B cells, eosinophils, mast cells and airway smooth muscle cells (106). The pollen-induced secretion of TSLP and the associated type 2 inflammation were shown to be dependent on TLR4 and myeloid differentiation primary response 88 (MyD88), and probably linked to oxidative stress (107-109). In this respect, stimulation of epithelial cells with pollen extracts from short ragweed, birch, timothy grass and mountain cedar caused elevation in the levels of reactive oxygen species (ROS) (110-113). In addition to TSPL, a TLR4/MyD88-dependency was also observed for pollen-induced IL-33-mediated T2 responses for IL-25, which has the potential to initiate and activate type 2 innate lymphoid cells and T2 cells (73).

Once activated by pro-inflammatory cytokines, dendritic cells instruct T2 polarization through three types of signals to naïve T cells: 1) antigen-derived peptides presented via MHC-II, 2) expression of co-stimulatory molecules and 3) secretion of pro-inflammatory cytokines and chemokines (114). In addition, activated dendritic cells secrete chemokines (CCL17, CCL22 and CXCL13) and chemokine receptors enable them to migrate to the lymph nodes, where they prime naïve T cells to become antigen-specific T2 cells (115-119).


For efficient T2 priming IL-4 seems to be important. Basophils, mast cells and NKT cells were shown to produce IL-4 (120) and

once generated, T2 cells themselves represent the most important source of IL-4.

An overview of the initiation process of allergic sensitization is shown in **figure 2**.

In summary, the mechanisms involved in pollen-induced activation of the innate immune system and T2 polarization are complex and not fully understood. It seems that different allergenic pollen sources interact with distinct innate receptors and signal-

Figure 2 - Pollen-induced activation of the innate immune system and T2 polarization (reproduced from ref. 73). Upon encounter with the epithelium the pollen hydrates and releases its content including allergens and various other bioactive molecules (1). At the epithelium (2), this immunogenic cocktail causes the disruption of the epithelial membrane, activates PRRs such as TLR4 and PAR2, triggers the release of alarmins (TSLP, IL-25 and IL-33), and induces oxidative stress and secretion of IL-8 and other pro-inflammatory cytokines (IL-1, IL-6 and TNFα). In turn, DCs are activated (upregulation of surface markers including OX40L and notch ligands), migrate to the lymph nodes (expression of CXCR5), where they present processed antigens via MHC-II to naïve T cells (3). Th2 polarization occurs either STAT6/GATA-3/IL-4-dependent (4A) or -independent via the NF-κB/STAT5 pathway and the contribution of ILC2s (4B). The origin of initial IL-4 for Th2 polarization is still a matter of discussion; proposed candidate are basophils and NKT cells. Once a Th2 immune response has been initiated, a class-switch of B cells to antigen-specific IgE-producing plasma cells occurs resulting in the sensitization of susceptible individuals to pollen allergens (5).

CCL17; CCL22 chemokine (C-C motif): ligand 17 and 22; CCR7: C-C chemokine receptor type 7; CD80; CD86 and CD40: cluster of differentiation 80; 86 and 40; CXCL-13: C-X-C motif chemokine 13; CXCR5: C-X-C chemokine receptor type 5; DCs: dendritic cells; GATA-3: GATA binding protein 3; IL-: Interleukin; ILC2: type 2 innate lymphoid cells; IRF4: interferon regulatory factor 4; NF-κB: nuclear factor "kappa-light-chain-enhancer" of activated B cells; NKT: natural killer T; OX40L: OX40 ligand; PARs: protease activated receptors; PRRs: pattern recognition receptors; ROS: reactive oxygen species; ST2: IL-33 receptor; STAT5, STAT6: signal transducer and activator of transcription 5 and 6; Th: T helper cells; TLR4: toll-like receptor 4; TNFα: Tumor necrosis factor alpha; TSLP: thymic stromal lymphopoietin.

ing pathways, that are also influenced by genetic polymorphisms affecting epithelial pattern recognition, barrier function, and cytokine production. Altogether, the data suggest that allergic sensitization to pollen most likely results from particular combinations of pollen-specific signals rather than from a common determinant of allergenicity.

Pollen-induced airway inflammation: specific features on allergic asthma

Experimental evidence suggests that allergen-specific T2 cells and their cytokines orchestrate allergic airway inflammation, induce mucus production from airway epithelium and promote airway hyper-responsiveness (121-123).

Along this line, studies on a human model of allergen-induced asthma exacerbation have been conducted aimed at exploring differences between allergic asthmatics and allergic non-asthmatic controls in the airway response to allergen, that could provide fundamental insights into asthma pathogenesis and possibly identify novel therapeutic targets (124, 125).

Cho *et al.* (2016) showed that both groups developed prominent allergic airway type 2 inflammation in response to allergen. However, allergic asthmatic subjects compared to allergic non asthmatic controls had markedly higher levels of innate type 2 receptors on allergen-specific CD4+ T cells recruited into the airways and increased levels of type 2 cytokines, total mucin as well as airway baseline smooth muscle mass (124).

Further research by Alladina et al. (2023) showed that transcriptional profile of airway epithelial cells upon allergen challenge with allergens was markedly altered in allergic asthmatics subjects as compared to allergic non-asthmatic controls (125). Specifically, in asthmatic subjects a subset of epithelial cells – goblet and suprabasal quiescent goblet cells as well as basal cells - displayed the greatest response to allergen, with upregulation of genes involved in type 2 inflammatory cell recruitment and signaling, mucus metaplasia, and genes that promote extracellular matrix degradation and connective tissue regeneration. In contrast, in allergic non-asthmatic subjects the basal and suprabasal cells were able to promote an injury-repair response to allergen challenge, with increased expression of alarmins (IL33 and HMGB1) and neutrophil chemoattractants. Collectively, these results identify airway basal and secretory cells as highly dynamic cells during allergic inflammation and reveal mechanisms by which they may drive asthma pathogenesis.

IL9-expressing pathogenic T2 cells, that amplify type 2 inflammation and promote the expression of profibrotic mediators and pathologic airway remodeling, have also been shown to be highly specific to asthmatic airways and were only observed after allergen challenge (125).

Additionally, airways of allergic asthmatics, after allergen challenge, were uniquely enriched for conventional type 2 dendritic cells (that express *CDIC*) and *CCR2*-expressing monocyte-derived cells, with up-regulation of genes that sustain type 2 inflammation

and promote airway remodeling. In contrast, airways of allergic non-asthmatic subjects were enriched for macrophage-like monocyte cells (MCs), characterized by production of factors modulating endocytic clearance, cell differentiation and survival, and expression of trophic factors promoting angiogenesis and tissue repair, as shown in animal models (126, 127). This finding suggests that these populations play an important role in the resolution of inflammation and protection against airway remodeling, as opposed to IL-4/IL-13 signaling via STAT6 in the airways of asthmatics, that may prevent or arrest macrophage differentiation and direct a pathogenic monocyte cell phenotype characterized by up-regulation of genes involved in inflammatory signaling, antigen presentation, and pathologic airway remodeling. Cellular crosstalk between airway epithelial and immune cells is also critical to the initiation and resolution phases of allergic inflammation (128-130). Cellular communication pathways in allergic controls were characterized by growth factor signaling and injury-repair response to allergen, whereas asthmatics were dominated by basal cell-Th2-mononuclear phagocyte interactions that may sustain and amplify type 2 signals, leading to failure to engage antioxidant response, loss of growth factor signaling, increase in mediators of airway remodeling.

In summary, allergen challenge leads to increased eosinophilia and type 2 cytokine levels in the airways of both allergic asthmatic and allergic non-asthmatic subjects, but the effector pathways elicited by T2 inflammation are distinct. The airway epithelium of asthmatic subjects is highly dynamic, with basal and secretory epithelial cells up-regulating the genes involved in matrix degradation, mucus metaplasia, and remodeling, while failing to induce the epithelial injury-repair and antioxidant processes observed in non-asthmatic controls, that are possibly protective against pathologic remodeling.

How pollen interacts with the respiratory mucosa remains largely unknown due to a lack of representative model systems. In this respect, Van Cleemput *et al.* (2019) demonstrated that pollen proteases of three plants, Kentucky bluegrass, white birch and hazel, selectively destroy the integrity and anchorage of columnar respiratory epithelial cells, but not of basal cells, in both *ex vivo* respiratory mucosal explants and *in vitro* primary equine respiratory epithelial cells (131). Interestingly, Blume *et al.* (2013) analysed the effect of grass pollen exposure on differentiated human primary bronchial epithelial cells derived from severe asthmatic donors and non-asthmatic controls. The results show a differential response in terms of inflammation mediator release, without any difference in physical barrier properties (132).

Discussion and conclusions

Asthma is a global problem and a significant social and economic burden. Although specific epidemiological data on pollen-induced asthma are scarce, overall allergic asthma, which is the most common phenotype, is costly for the healthcare systems, with large additional societal costs due to lost work productivity.

Clinical manifestations are intimately linked with the release of plant pollen into the environment. The factors that influence pollen concentration and potency are multiple, region- and species-specific, difficult to identify, quantify and predict in terms of type of effect, as it is increasingly clear that they all have independent and joint effects on respiratory health. The variability of pollen and allergen concentration is often overlooked in clinical studies, even in randomized controlled trials, suggesting that allergic-type asthma is not always properly investigated and introducing a possible bias in studies on allergic populations.

In the future, temperature and precipitation are projected to increase, all factors that will potentially augment pollen emission and allergenicity, with negative impact on respiratory health. Also, urbanization will further increase in the next decades, with negative consequences on the health and survival of urban trees, leading to loss of biodiversity. In this context, tree urban planning and the integration of green infrastructure may mitigate the impact of urban development.

The molecular bases of allergenicity are not fully understood. There is evidence that allergic sensitization dependents not only on the genetics of the individuals and the environmental factors, but also on species-specific immunostimulatory components of the pollen matrix that may contribute to the generation of a pro-inflammatory microenvironment to favor T2 polarization. Future investigation will contribute to elucidate the pathogenic effects of pollen in the airway.

Importantly, in allergic asthmatics, as compared to allergic non-asthmatics, the pathogenic effector circuits sustain and amplify T2 signals in response to allergens, while the circuits facilitating the resolution of inflammation and tissue repair are inhibited: therefore, tissue reprogramming in response to T2 inflammation could drive structural airway disease and may represent a defining feature of allergic asthma.

The observation that many allergic individuals develop asthma over time (133), suggests that the pathogenic mechanisms leading to asthma may be incremental. Thus, a key question is whether a pharmacologic intervention may slow down or at least partially revert the cellular pathways driving airway remodeling.

Inhaled glucocorticoids reduce airway inflammation and some aspects of remodeling, as proliferation of lung fibroblasts, metaplasia of goblet cells and thickening of subepithelial basal membrane (134, 135), but currently there are no drugs or other interventions available that can definitely reverse this process (134). *In vivo* animal models of allergen-induced airway inflammation, using sensitized rats exposed to repeated allergen challenge, showed established structural alterations of the airways could not be reversed by the treatment with inhaled corticosteroid administered post challenge, but concomitant treatment could partly prevent these changes (136). In addition, glucocorticoid could inhibit *in vitro* the differ-

entiation of human lung fibroblasts to contractile myofibroblasts, that are involved in the development of the inflammatory cascade. The effect of reversion to the normal phenotype occurs both at the very early and also at a mild stage of the differentiation process (137). The clinical relevance of these findings is not known, since no animal model of allergic airways disease encompasses all features of the human disease, and results cannot be easily translated to the clinic; however, the data support the hypothesis that early intervention with inhaled glucocorticoids could at least in part prevent or slow down airway remodeling in asthma.

Advances in the understanding of the molecular circuits underlying airway structural changes and remodeling in response to allergens as well as repair mechanisms may facilitate the development of novel and more effective therapeutic approaches.

Fundings

GlaxoSmithKline S.p.A. provided financial and human resources to support the implementation of the project "The patient with pollen-induced asthma: from the unpredictability of risk to a possible management model". The company has been granted an exclusive license by AAIITO (Italian Association of Territorial and Hospital Allergologists and Immunologists) to access and use the information, results, and materials derived from the project.

Contributions

All authors equally contributed to the manuscript draft and critical revision for important intellectual content, to data collection, analysis and interpretation. All authors read and approved the final version of the manuscript.

Conflict of interests

The authors declare that they have no conflict of interests.

References

- Pavord ID, Beasley R, Agusti A, Anderson GP, Bel E, Brusselle G, et al. After asthma:redefining airways diseases. Lancet. 2018;391(10118):350-400. doi: 10.1016/S0140-6736(17)30879-6.
- 2. Anderson GP. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet. 2008;372(9643):1107-19. doi: 10.1016/S0140-6736(08)61452-X.
- Wenzel SE. Asthma: defining of the persistent adult phenotypes. Lancet. 2006;368(9537):804-13. doi: 10.1016/S0140-6736(06)69290-8.
- 4. Corren J. Asthma phenotypes and endotypes:an evolving paradigm for classification. Discov Med. 2013;15:243-9.
- Kuruvilla ME, Lee FE, Lee GB. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol. 2019;56(2):219-33. doi: 10.1007/s12016-018-8712-1.
- Kaur R, Chupp G. Phenotypes and endotypes of adult asthma: moving toward precision medicine. J Allergy Clin Immunol. 2019;144(1):1-12. doi: 10.1016/j.jaci.2019.05.031.

- Yang CH, Lv JJ, Li XY, Yang XT, Yin MY. Global burden of asthma in young adults in 204 countries and territories, 1990-2019: Systematic analysis of the Global burden of disease study 2019. Prev Med Rep. 2023;37:102531. doi: 10.1016/j.pmedr.2023.102531.
- Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019:a systematic analysis for the Global Burden of Disease Study 2019. Lancet (London, England). 2020;396(10258):1204-22.
- Song P, Adeloye D, Salim H, Dos Santos JP, Campbell H, Sheikh A, Rudan I. Global, regional, and national prevalence of asthma in 2019: a systematic analysis and modelling study. J Glob Health. 2022;12:04052. doi: 10.7189/jogh.12.04052.
- Rabe APJ, Loke WJ, Gurjar K, Brackley A, Lucero-Prisno Iii DE. Global Burden of Asthma, and Its Impact on Specific Subgroups: Nasal Polyps, Allergic Rhinitis, Severe Asthma, Eosinophilic Asthma. J Asthma Allergy. 2023;16:1097-113. doi: 10.2147/JAA.S418145.
- Global Initiative for Asthma Management and Prevention(GINA)

 update 2024. Available at: https://ginasthma.org/wp-content/uploads/2024/05/GINA-2024-Strategy-Report-24_05_22_WMS.pdf.
- 12. HME. Global Burden of Disease Study 2019(GBD 2019) Data Resources. Institute for health metrics and evaluation at the University of Washington; 2021. Available at: http://ghdx.healthdata.org/gbd-2019.
- Schatz M, Rosenwasser L. The allergic asthma phenotype. J Allergy Clin Immunol Pract. 2014;2(6):645-8. doi: 10.1016/j.jaip.2014.09.004.
- Boonpiyathad T, Sozener ZC, Satitsuksanoa P, Akdis CA. Immunologic mechanisms in asthma. Semin Immunol. 2019;46:101333. doi: 10.1016/j.smim.2019.101333.
- Akar-Ghibril N, Casale T, Custovic A, Phipatanakul W. Allergic Endotypes and Phenotypes of Asthma. J Allergy Clin Immunol Pract. 2020;8(2):429-40. doi: 10.1016/j.jaip.2019.11.008.
- Arbes SJ Jr, Gergen PJ, Vaughn B, Zeldin DC. Asthma cases attributable to atopy: results from the Third National Health and Nutrition Examination Survey. J Allergy Clin Immunol. 2007;120(5):1139-45. doi: 10.1016/j.jaci.2007.07.056.
- Stern J, Pier J, Litonjua AA. Asthma epidemiology and risk factors. Semin Immunopathol. 2020;42(1):5-15. doi: 10.1007/s00281-020-00785-1.
- Erbas B, Jazayeri M, Lambert KA, Katelaris CH, Prendergast LA, Tham R, et al. Outdoor pollen is a trigger of child and adolescent asthma emergency department presentations: a systematic review and meta-analysis. Allergy. 2018;73(8):1632-41. doi: 10.1111/all.13407.
- 19. Annesi-Maesano I, Čecchi L, Biagioni B, Chung KF, Clot B, Collaud Coen M, et al. Is exposure to pollen a risk factor for moderate and severe asthma exacerbations? Allergy. 2023;78(8):2121-47. doi: 10.1111/all.15724.
- 20. Stoltz DJ, Jackson DJ, Evans MD, Gangnon RE, Tisler CJ, Gern JE, Lemanske RF Jr. Specific patterns of allergic sensitization in early childhood and asthma & rhinitis risk. Clin Exp Allergy. 2013;43(2):233-41. doi: 10.1111/cea.12050.
- 21. Bourdin A, Brusselle G, Couillard S, Fajt ML, Heaney LG, Israel E, et al. Phenotyping of Severe Asthma in the Era of Broad-Acting Anti-Asthma Biologics. J Allergy Clin Immunol Pract. 2024;12(4):809-23. doi: 10.1016/j.jaip.2024.01.023.
- 22. Agache I, Annesi-Maesano I, Cecchi L, Biagioni B, Chung KF, Clot B, et al. EAACI Guidelines on Environmental Science for Allergy and Asthma: The impact of short-term exposure to outdoor air pollutants on asthma-related outcomes and recommendations for mitigation measures. Allergy. 2024;79(7):1656-86. doi: 10.1111/all.16103.

- 23. Jariwala SP, Kurada S, Moday H, Thanjan A, Bastone L, Khananashvili M, et al. Association between tree pollen counts and asthma ED visits in a high-density urban center. J Asthma. 2011;48(5):442-8. doi: 10.3109/02770903.2011.567427.
- D'Amato G, Chong-Neto HJ, Monge Ortega OP, Vitale C, Ansotegui I, Rosario N, et al. The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens. Allergy. 2020;75(9):2219-28. doi: 10.1111/all.14476.
- 25. Tegart LJ, Johnston FH, Borchers Arriagada N, Workman A, Dickinson JL, Green BJ, et al. 'Pollen potency': the relationship between atmospheric pollen counts and allergen exposure. Aerobiologia. 2021;37:825-41. doi: 10.1007/s10453-021-09726-3.
- Buters J, Prank M, Sofiev M, Pusch G, Albertini R, Annesi-Maesano I, et al. Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time in season. J Allergy Clin Immunol. 2015;136:87-95. doi: 10.1016/j.jaci.2015.01.049.
- 27. Fuertes E, Jarvis D, Lam H, Davies B, Fecht D, Candeias J, et al. Phl p 5 levels more strongly associated than grass pollen counts with allergic respiratory health. J Allergy Clin Immunol. 2024;153(3):844-51. doi: 10.1016/j.jaci.2023.11.011.
- 28. Cecchi L, G, Annesi-Maesano I. Climate change and outdoor aeroal-lergens related to allergy and asthma: Taking the exposome into account. Allergy. 2020;75(9):2361-3. doi: 10.1111/all.14286.
- Zhang Y, Steiner AL. Projected climate-driven changes in pollen emission season length and magnitude over the continental United States. Nat Commun. 2022;13:1234. doi: 10.1038/s41467-022-28764-0.
- Ziska LH, Makra L, Harry SK, Bruffaerts N, Hendrickx M, Coates F, et al. Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: a retrospective data analysis. Lancet Planet Health. 2019;3(3):e124-31. doi: 10.1016/S2542-5196(19)30015-4.
- Matthews BH, Alsante AN and Brooks SD. Pollen Emissions of Subpollen Particles and Ice Nucleating Particles. ACS Earth Space Chem. 2023;7(6):1207-18. doi: 10.1021/acsearthspacechem.3c00014.
- 32. Schramm PJ, Brown CL, Saha S, Conlon KC, Manangan AP, Bell JE, et al. A systematic review of the effects of temperature and precipitation on pollen concentrations and season timing, and implications for human health. Int J Biometeorol. 2021;65(10):1615-28. doi: 10.1007/s00484-021-02128-7.
- 33. Lara B, Rojo J, Costa AR, Burgos-Montero AM, Antunes CM, Pérez-Badia R. Atmospheric pollen allergen load and environmental patterns in central and southwestern Iberian Peninsula. Sci Total Environ. 2023;858:159630. doi: 10.1016/j.scitotenv.2022.159630.
- D'Amato G, Annesi-Maesano I, Urrutia-Pereira M, Del Giacco S, Rosario Filho NA, Chong-Neto HJ, et al. Thunderstorm allergy and asthma: state of the art. Multidiscip Respir Med. 2021;16:806. doi: 10.4081/mrm.2021.806.
- 35. D'Amato G, Annesi-Maesano I, Cecchi L, D'Amato M. Latest news on relationship between thunderstorms and respiratory allergy, severe asthma, and deaths for asthma. Allergy. 2019;74(1):9-11. doi: 10.1111/all.13616.
- 36. Emmerson KM, Silver JD, Thatcher M, Wain A, Jones PJ, Dowdy A, et al. Atmospheric modelling of grass pollen rupturing mechanisms for thunderstorm asthma prediction. PLoS One. 2021;16(4):e0249488. doi: 10.1371/journal.pone.0249488.
- 37. Cecchi L, Scala E, Caronni S, Citterio S, Aser R. Allergenicity at component level of sub-pollen particles from different sources obtained by osmolar shock: A molecular approach to thunder-

- storm-related asthma outbreaks. Clin Exp Allergy. 2021;51(2):253-61. doi: 10.1111/cea.13764.
- 38. Negral L, Moreno-Grau S, Galera MD, Elvira-Rendueles B, Costa-Gómez I, Aznar F, et al. The effects of continentality, marine nature and the recirculation of air masses on pollen concentration: Olea in a Mediterranean coastal enclave. Sci Total Environ. 2021;790:147999. doi: 10.1016/j.scitotenv.2021.147999.
- Bayr D, Plaza MP, Gilles S, Kolek F, Leier-Wirtz V, Traidl-Hoffmann C, Damialis A. Pollen long-distance transport associated with symptoms in pollen allergics on the German Alps: An old story with a new ending? Sci Total Environ. 2023;881:163310. doi: 10.1016/j.scitotenv.2023.163310.
- Cecchi L, Morabito M, Domeneghetti PM, Crisci A, Onorari M, Orlandini S. Long distance transport of ragweed pollen as a potential cause of allergy in central Italy. Ann Allergy Asthma Immunol. 2006;96(1):86-91. doi: 10.1016/s1081-1206(10)61045-9.
- Sénéchal H, Visez N, Charpin D, Shahali Y, Peltre G, Biolley J-P, et al. A Review of the Effects of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and Allergenicity. Sci World J. 2015:940243. doi: 10.1155/2015/940243. doi: 10.1155/2015/940243.
- Lam, HCY, Jarvis, D, Fuertes, E. Interactive Effects of Allergens and Air Pollution on Respiratory Health: A Systematic Review. Sci Total Environ. 2021;757:143924. doi: 10.1016/j.scitotenv.2020.143924.
- 43. Gisler A. Allergies in Urban Areas on the Rise: The Combined Effect of Air Pollution and Pollen. Int J Pub Health. 2021;66:604022. doi: 10.3389/ijph.2021.1604022.
- 44. Orellano P, Quaranta N, Reynoso J, Balbi B, Vasquez J. Effect of outdoor air pollution on asthma exacerbations in children and adults: systematic review and multi-level meta-analysis. PLoS One. 2017;12(3):1-15. doi: 10.1371/journal.pone.0174050.
- Ziemianin M, Waga J, Czarnobilska E, Myszkowska D. Changes in qualitative and quantitative traits of birch (Betula pendula) pollen allergenic proteins in relation to the pollution contamination. Environ Sci Pollut Res Int. 2021;28(29):39952-65. doi: 10.1007/ s11356-021-13483-8.
- 46. Zhou S, Wang X, Lu S, Yao C, Zhang L, Rao L, et al. Characterization of allergenicity of Platanus pollen allergen a 3(Pla a 3) after exposure to NO₂ and O₃. Environ Pollut. 2021;278:116913. doi: 10.1016/j.envpol.2021.116913.
- 47. Obersteiner A, Gilles S, Frank U, Beck I, Haring F, Ernst D, et al. Pollen-associated microbiome correlates with pollution parameters and the allergenicity of pollen. PLoS One. 2016;11(2):e0149545. doi: 10.1371/journal.pone.0149545.
- 48. Manirajan AB, Hinrichs AK, Ratering S, Rusch V, Schwiertz A, Geissler-Plaum R, Eichner G, Cardinale M, Kuntz S, Schnell S. Bacterial Species Associated with Highly Allergenic Plant Pollen Yield a High Level of Endotoxins and Induce Chemokine and Cytokine Release from Human A549 Cells. Inflammation. 2022;45(6):2186-201. doi: 10.1007/s10753-022-01684-3.
- Aina R, Asero R, Ghiani A, Marconi G, Albertini E, Citterio S. Exposure to cadmium-contaminated soils increases allergenicity of *Poa annua* L. pollen. Allergy. 2010;65:1313-21. doi: 10.1111/j.1398-9995.2010.02364.x.
- 50. Bostock RM, Pye RF, Roubsova TV. Predisposition in plant disease. Exploiting the nexus in abiotic and biotic stress perception and response. Annu. Rev. Phytopathol. 2014;52:517-49. doi: 10.1146/annurev-phyto-081211-172902.
- 51. El Kelish A, Zhao F, Heller W, Durner J, Winkler JB, Behrendt H, et al. Ragweed (Ambrosia artemisiifolia) pollen allergenicity: Super-

- SAGE transcriptomic analysis upon elevated CO2 and drought stress. BMC Plant Biol. 2014;14:176. doi: 10.1186/1471-2229-14-176.
- 52. Katz DSW, Dzul A, Kendel A, Batterman SA. Effect of intra-urban temperature variation on tree flowering phenology, airborne pollen, and measurement error in epidemiological studies of allergenic pollen. Sci Total Environ. 2019;653:1213-22. doi: 10.1016/j. scitotenv.2018.11.020.
- Hassan T, Zhang J, Prodhan FA, Pangali Sharma TP, Bashir B. Surface Urban Heat Islands Dynamics in Response to LULC and Vegetation across South Asia (2000-2019). Remote Sens. 2021;13:3177. doi: 10.3390/rs13163177.
- 54. Steckling-Muschack N, Mertes H and Mittermeier I. A systematic review of threshold values of pollen concentrations for symptoms of allergy. Aerobiologia. 2021;37:395-424. doi: 10.1007/s10453-021-09709-4.
- 55. Charalampopoulos A, Damialis A, Lazarina M, Halley JM and Vokou D. Spatio-temporal assessment of air borne pollen in the urban environment: The pollenscape of thessaloniki as a case study. Atmos Environ. 2021;247:118185. doi: 10.1016/j.atmos env.2021.118185.
- Dbouk T, Visez N, Samer A, Shahrour I and Drikakis D. Risk assessment of pollen allergy in urban environments. Sci Rep. 2022;12:21076. doi: 10.1038/s41598-022-24819-w.
- 57. Becker J, Steckling-Muschack N, Mittermeier I, Bergmann KC, Bose-O'Reilly S, Buters J, et al. Threshold values of grass pollen (Poaceae) concentrations and increase in emergency department visits, hospital admissions, drug consumption and allergic symptoms in patients with allergic rhinitis: a systematic review. Aerobiologia. 2021;37:633-62. doi: 10.1007/s10453-021-09720-9.
- 58. Pritchard JN. The Influence of Lung Deposition on Clinical Response. J Aerosol Med. 2001:14(Supp. 1):S19-26. doi: 10.1089/08942680150506303.
- Kleinstreuer C, Zhang Z, and J F Donohue. Targeted Drug-Aerosol Delivery in the Human Respiratory System. Annual Rev Biomed Eng. 2008;10:195-220. doi: 10.1146/annurev.bioeng.10.061807.160544.
- Knox RB, Suphioglu C, Taylor P, Desai R, Watson HC, Peng JL, Bursill LA. Major grass pollen allergen Lol p 1 binds to diesel exhaust particles: implications for asthma and air pollution. Clin Exp Allergy. 1997;27(3):246-51.
- Thio BJ, Lee JH, Meredith JC. Characterization of ragweed pollen adhesion to polyamides and polystyrene using atomic force microscopy. Environ Sci Technol. 2009;43(12):4308-13. doi: 10.1021/es803422s.
- Ciprandi G, Puccinelli P, Incorvaia C, Masieri S. Parietaria Allergy: An Intriguing Challenge for the Allergist. Medicina (Kaunas). 2018;54(6):106. doi: 10.3390/medicina54060106.
- 63. Serafini U. Studies on hay fever with special regard to pollinosis due to parietaria officinalis. Allergy. 1957;11(1):3-27.
- 64. Mampage CBA, Hughes DD, Jones LM, Metwali N, Thorne PS, Stone EA. Characterization of sub-pollen particles in size-resolved atmospheric aerosol using chemical tracers. Atmos Environ X. 2022;15:100177. doi: 10.1016/j.aeaoa.2022.100177.
- 65. Hughes DD, Mampage CBA, Jones LM, Liu Z, and Elizabeth A. Stone EA. Characterization of Atmospheric Pollen Fragments during Springtime Thunderstorms. Environ Sci Technol Lett. 2020;7(6):409-14. doi: 10.1021/acs.estlett.0c00213.
- Hassan MS, Lau R. Inhalation performance of pollen-shape carrier in dry powder formulation: Effect of size and surface morphology. J Pharmaceutics. 2011;413:93-102. doi: 10.1016/j.ijpharm.2011.04.033.
- 67. Inthavong K, Shang Y, Del Gaudio JM, Wise SK, Edwards TS, Bradshaw K, et al. A Review of the Respiratory Health Burden Attribut-

- able to Short-Term Exposure to Pollen. Respir Physiol Neurobiol. 2021;294:103769. doi: 10.1016/j.resp.2021.103769.
- 68. Idrose NS, Lodge CJ, Erbas B, Douglass JoA, Bui DS, Dharmage SC. A Review of the Respiratory Health Burden Attributable to Short-Term Exposure to Pollen. Int. J Environ Res Public Health. 2022;19(12):7541. doi: 10.3390/ijerph19127541.
- 69. Idrose NS, Tham, RCA, Lodge CJ, Lowe AJ, Bui D, Perret JL, et al. Is short-term exposure to grass pollen adversely associated with lung function and airway inflammation in the community? Allergy. 2021;76(4):1136-46. doi: 10.1111/all.14566.
- Nassikas NJ, Luttmann-Gibson H, Rifas-Shiman S, Oken M, Gold DR, Rice MB. Acute exposure to pollen and airway inflammation in adolescents. Ped Pulmonol. 2024;59:1313-20. doi: 10.1002/ppul.26908.
- Liu L, Li G, Sun Y, Li J, Tang N, Dong L. Airway wall thickness of allergic asthma caused by weed pollen or house dust mite assessed by computed tomography. Resp Med. 2015;109(3):339-46. doi: 10.1016/j.rmed.2014.11.011.
- 72. Jutel M, Agache I, Zemelka-Wiacek M, Akdis M, Chivato T, Del Giacco S. Nomenclature of allergic diseases and hypersensitivity reactions: Adapted to modern needs: An EAACI position paper. Allergy. 2023;78(11):2851-74. doi: 10.1111/all.15889.
- Pointner L, Bethanis A, Thaler M, Traidl-Hoffmann C, Gilles S, et al. Initiating pollen sensitization – complex source, complex mechanisms. Clin Transl Allergy 2020;10:36. doi: 10.1186/s13601-020-00341-y.
- 74. Aglas L, Gilles S, Bauer R, Huber S, Araujo GR, Mueller G, et al. Context matters:TH2 polarization resulting from pollen composition and not from protein-intrinsic allergenicity. J Allergy Clin Immunol. 2018;142(3):984-7.e6. doi: 10.1016/j.jaci.2018.05.004.
- 75. Araujo GR, Aglas L, Vaz ER, Machado Y, Huber S, Himly M, et al. TGFβ1 mimetic peptide modulates immune response to grass pollen allergens in mice. Allergy. 2020;75(4):882-91. doi:10.1111/all.14108.
- 76. Wimmer M, Alessandrini F, Gilles S, Frank U, Oeder S, Hauser M, et al. Pollen-derived adenosine is a necessary cofactor for ragweed allergy. Allergy. 2015;70(8):944-54. doi: 10.1111/all.12642.
- 77. Wolf M, Twaroch TE, Huber S, Reithofer M, Steiner M, Aglas L, et al. Amb a 1 isoforms:unequal siblings with distinct immunological features. Allergy. 2017;72(12):1874-82. doi: 10.1111/all.13196.
- Eisenbarth SC, Zhadkevich A, Ranney P, Herrick CA, Bottomly K. IL-4-dependent Th2 collateral priming to inhaled antigens independent of toll-like receptor 4 and myeloid differentiation factor 88. J Immunol. 2004;172(7):4527-34. doi: 10.4049/jimmunol.172.7.4527.
- Cadot P, Meyts I, Vanoirbeek JA, Vanaudenaerde B, Bullens DM. Ceup- pens JL. Sensitization to inhaled ryegrass pollen by collateral priming in a murine model of allergic respiratory disease. Int Arch Allergy Immunol. 2010;152(3):233-42. doi: 10.1159/000283031.
- 80. Soh WT, Aglas L, Mueller GA, Gilles S, Weiss R, Scheiblhofer S, et al. Multiple roles of Bet v 1 ligands in allergen stabilization and modulation of endosomal protease activity. Allergy. 2019;74(12):2382-93. doi: 10.1111/all.13948.
- McKenna OE, Posselt G, Briza P, Lackner P, Schmitt AO, Gadermaier G, et al. Multi-approach analysis for the identification of proteases within birch pollen. Int J Mol Sci. 2017;18(7):1433. doi: 10.3390/ijms18071433.
- 82. Gilles S, Behrendt H, Ring J, Traidl-Hoffmann C. The pollen enigma: modulation of the allergic immune response by non-allergenic, pollen-derived compounds. Curr Pharm Des. 2012;18(16):2314-9. doi: 10.2174/138161212800166040.
- 83. Bublin M, Eiwegger T, Breiteneder H. Do lipids influence the allergic sensitization process? J Allergy Clin Immunol. 2014;134(3):521-9. doi: 10.1016/j.jaci.2014.04.015.

- 84. Bashir ME, Lui JH, Palnivelu R, Naclerio RM, Preuss D. Pollen lipidomics: lipid profiling exposes a notable diversity in 22 allergenic pollen and potential biomarkers of the allergic immune response. PLoS One. 2013;8(2):e57566. doi: 10.1371/journal.pone.0057566.
- 85. Pallett DW, Soh E, Edwards ML, Bodey K, Lau LC, Cooper JI, et al. Proof of concept pilot study: prevalence of grass virus infection and the potential for effects on the allergenic potency of pollen. Environ Health. 2009;8(Suppl 1):S10. doi: 10.1186/1476-069x-8-s1-s10.
- 86. Reinmuth-Selzle K, Kampf CJ, Lucas K, Lang-Yona N, Frohlich-Nowoisky J, Shiraiwa M, et al. Air pollution and climate change effects on allergies in the anthropocene: abundance, interaction, and modification of allergens and adjuvants. Environ Sci Technol. 2017;51(8):4119-411. doi: 10.1021/acs.est.6b04908.
- 87. Heydenreich B, Bellinghausen I, Konig B, Becker WM, Grabbe S, Petersen A, et al. Gram-positive bacteria on grass pollen exhibit adjuvant activity inducing inflammatory T cell responses. Clin Exp Allergy. 2012;42(1):76-84. doi: 10.1111/j.1365-2222.2011.03888.x.
- 88. Gilles S, Mariani V, Bryce M, Mueller MJ, Ring J, Behrendt H, et al. Pollen allergens do not come alone:pollen associated lipid mediators (PALMS) shift the human immune systems towards a T(H)2-dominated response. Allergy Asthma Clin Immunol. 2009;5(1):3. doi: 10.1186/1710-1492-5-3.
- 89. Agea E, Russano A, Bistoni O, Mannucci R, Nicoletti I, Corazzi L, et al. Human CD1-restricted T cell recognition of lipids from pollens. J Exp Med. 2005;202(2):295-308. doi: 10.1084/jem.20050773.
- Abos-Gracia B, del Moral MG, Lopez-Relano J, Viana-Huete V, Castro L, Villalba M, et al. Olea europaea pollen lipids activate invariant natural killer T cells by upregulating CD1d expression on dendritic cells. J Allergy Clin Immunol. 2013;131(5):1393-9.e5. doi: 10.1016/j. jaci.2012.11.014.
- 91. Gonzalez Roldan N, Engel R, Dupow S, Jakob K, Koops F, Orinska Z, et al. Lipid mediators from timothy grass pollen contribute to the effector phase of allergy and prime dendritic cells for glycolipid presentation. Front Immunol. 2019;10:974. doi: 10.3389/fimmu.2019.00974.
- 92. Zasloff M. Pollen has a microbiome: implications for plant reproduction, insect pollination and human allergies. Environ Microbiol. 2017;19(1):1-2. doi: 10.1111/1462-2920.13661.
- 93. Darbah JN, Kubiske ME, Nelson N, Oksanen E, Vaapavuori E, Karnosky DF. Impacts of elevated atmospheric CO2 and O3 on paper birch (*Betula papyrifera*): reproductive fitness. Sci World J. 2007;7(Suppl 1):240-6. doi: 10.1100/tsw.2007.42.
- 94. Sedghy F, Sankian M, Moghadam M, Ghasemi Z, Mahmoudi M, Varasteh AR. Impact of traffic-related air pollution on the expression of *Platanus orientalis* pollen allergens. Int J Biometeorol. 2017;61(1):1-9. doi: 10.1007/s00484-016-1186-z.
- 95. Kanter U, Heller W, Durner J, Winkler JB, Engel M, Behrendt H, et al. Molecular and immunological characterization of ragweed(Ambrosia artemisiifolia L.) pollen after exposure of the plants to elevated ozone over a whole growing season. PLoS One. 2013;8(4):e61518. doi: 10.1371/journal.pone.0061518.
- 96. Beck I, Jochner S, Gilles S, McIntyre M, Buters JT, Schmidt-Weber C, et al. High environmental ozone levels lead to enhanced allergenicity of birch pollen. PLoS One. 2013;8(11):be80147. doi: 10.1371/journal.pone.0080147.
- 97. Papazian D, Hansen S, Würtzen PA. Airway responses towards allergens from the airway epithelium to T cells. Clin Exp Allergy. 2015;45(8):1268-87. doi: 10.1111/cea.12451.

- 98. Mattila P, Joenvaara S, Renkonen J, Toppila-Salmi S, Renkonen R. Allergy as an epithelial barrier disease. Clin Transl Allergy. 2011;1(1):5. doi: 10.1186/2045-7022-1-5.
- Raftery MJ, Saldanha RG, Geczy CL, Kumar RK. Mass spectrometric analysis of electrophoretically separated allergens and pro- teases in grass pollen diffusates. Respir Res. 2003;4:10. doi: 10.1186/1465-9921-4-10.
- 100. Mabalirajan U. Possible involvement of protease-mediated neutrophil recruitment and epithelial barrier disruption in ragweed pollen sensitization. Am J Respir Cell Mol Biol. 2017;56(2):271-2. doi: 10.1165/rcmb.2016-0148LE.
- 101. Hosoki K, Brasier AR, Kurosky A, Boldogh I, Sur S. Reply:protease plays a role in ragweed pollen-induced neutrophil recruitment and epithelial barrier disruption. Am J Respir Cell Mol Biol. 2017;56(2):272-3. doi: 10.1165/rcmb.2016-0281LE.
- 102. Bacher P, Heinrich F, Stervbo U, Nienen M, Vahldieck M, Iwert C, et al. Regulatory T cell specificity directs tolerance versus allergy against aeroantigens in humans. Cell. 2016;167(4):1067-78.e16. doi: 10.1016/j.cell.2016.09.050.
- 103. Mjösberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol. 2011;12(11):1055-62. doi: 10.1038/ni.2104.
- 104. Kouzaki H, Kikuoka H, Matsumoto K, Kato T, Tojima I, Shimizu S, et al. A mechanism of interleukin-25 production from airway epithelial cells induced by Japanese cedar pollen. Clin Immunol. 2018;193:46-51. doi: 10.1016/j.clim.2018.01.009.
- 105. Akasaki S, Matsushita K, Kato Y, Fukuoka A, Iwasaki N, Nakahira M, et al. Murine allergic rhinitis and nasal Th2 activation are mediated via TSLP- and IL-33-signaling pathways. Int Immunol. 2016;28(2):65-766. doi: 10.1093/intimm/dxv055.
- 106. Smolinska S. Antolín-Amérigo D, Dan Popescu and Jutel M. Thymic Stromal Lymphopoietin(TSLP), Its Isoforms and the Interplay with the Epithelium in Allergy and Asthma. Int J Mol Sci. 2023;24:12725. doi: 10.3390/ijms241612725.
- 107. Ochiai S, Jagot F, Kyle RL, Hyde E, White RF, Prout M, et al. Thymic stromal lymphopoietin drives the development of IL-13(+) Th2 cells. Proc Natl Acad Sci USA. 2018;115(5):1033-8. doi: 10.1073/pnas.1714348115.
- 108. Deng R, Chen X, Zhang Y, Bian F, Gao N, Hu J, et al. Short ragweed pollen promotes M2 macrophage polarization via TSLP/TSLPR/OX40L signaling in allergic inflammation. Mucosal Immunol. 2019;12(5):1141-9. doi: 10.1038/s41385-019-0187-8.
- 109. Li DQ, Zhang L, Pflugfelder SC, De Paiva CS, Zhang X, Zhao G, et al. Short ragweed pollen triggers allergic inflammation through Toll-like receptor 4-dependent thymic stromal lymphopoietin/OX40 ligand/OX40 signaling pathways. J Allergy Clin Immunol. 2011;128(6):1318-25.e2. doi: 10.1016/j.jaci.2011.06.041.
- 110. Lee SI, le Pham D, Shin YS, Suh DH, Park HS. Environmental changes could enhance the biological effect of Hop J pollens on human airway epithelial cells. J Allergy Clin Immunol. 2014;134(2):470-2. doi: 10.1016/j.jaci.2014.01.034.
- 111. Shalaby KH, Allard-Coutu A, O'Sullivan MJ, Nakada E, Qureshi ST, Day BJ, et al. Inhaled birch pollen extract induces airway hyperresponsiveness via oxidative stress but independently of pollen-intrinsic NADPH oxi- dase activity, or the TLR4-TRIF pathway. J Immunol. 2013;191(2):922-33. doi: 10.4049/jimmunol.1103644.
- 112. Yadav UC, Ramana KV, Srivastava SK. Aldose reductase inhibition sup- presses airway inflammation. Chem Biol Interact. 2011;191(1-3):339-45. doi: 10.1016/j.cbi.2011.02.014.

- 113. Hosoki K, Redding D, Itazawa T, Chakraborty A, Tapryal N, Qian S, et al. Innate mechanism of pollen- and cat dander-induced oxidative stress and DNA damage in the airways. J Allergy Clin Immunol. 2017;140(5):1436-9.e5. doi: 10.1016/j.jaci.2017.04.04.
- 114. Yang D, Han Z, Oppenheim JJ. Alarmins and immunity. Immunol Rev. 2017;280(1):41-56. doi: 10.1111/imr.12577.
- 115. Han M, Hu R, Ma J, Zhang B, Chen C, Li H, et al. Fas signaling in dendritic cells mediates Th2 polarization in HDM-induced allergic pulmonary inflammation. Front Immunol. 2018;9:3045. doi: 10.3389/fimmu.2018.03045.
- 116. Leon B, Ballesteros-Tato A, Browning JL, Dunn R, Randall TD, Lund FE. Regulation of T(H)2 development by CXCR5+ dendritic cells and lymphotoxin-expressing B cells. Nat Immunol. 2012;13(7):681-90. doi: 10.1038/ni.2309.
- 117. Kikuchi K, Yanagawa Y, Onoé K. CCR7 Ligand-enhanced phagocytosis of various antigens in mature dendritic cells—time course and antigen distribution different from phagocytosis in immature dendritic cells. Microbiol Immunol. 2005;49(6):535-44. doi: 10.1111/j.1348-0421.2005.tb03759.x.
- 118. Kucharczyk A, Jahnz-Rózyk K, Targowski T, Grabowska-Krawiec P, Owc- zarek W, Kucharczyk P. Evaluation of CCL22 AND CCL17 Concentrations in Patients Sensitized To Grass Pollen Grains During Specific Immuno- therapy. Int Rev. 2010;16(3-4):63-70.
- 119. Batsalova T, Kostova Z, Moten D, Teneva I, Dzhambazov B. Serum levels of certain CC and CXC chemokines in birch pollen allergic individuals out of the pollen season. Adv Biol Earth Sci. 2017;2(1):23-33.
- 120. Zhong W, Su W, Zhang Y, Liu Q, Wu J, Di C, et al. Basophils as a primary inducer of the T helper type 2 immunity in ovalbumin-induced allergic airway inflammation. Immunology. 2014;142(2):202-15. doi: 10.1111/imm.12240.
- 121. Locksley RM. Asthma and allergic inflammation. Cell. 2010;140:777-83. doi: 10.1016/j.cell.2010.03.004.
- 122. Kuperman DA, Huang X, Koth LL, Chang GH, Dolganov GM, Zhu Z, et al. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med. 2002;8(8):885-9. doi: 10.1038/nm734.
- 123. Martin JG, Duguet A, Eidelman DH. The contribution of airway smooth muscle to airwaya narrowing and airway hyperresponsiveness in disease. Eur Resp J. 2000;16(2):349-54. doi: 10.1034/j.1399-3003.2000.16b25.x.
- 124. Cho JL, Ling MF, Adams DC, Faustino L, Islam SA, Afshar R, et al. Allergic asthma is distinguished by sensitivity of allergen-specific CD4+ T cells and airway structural cells to type 2 inflammation. Sci Transl Med. 2016;8(359):359ra132. doi: 10.1126/scitranslmed.aag1370.
- 125. Alladina J, Smith NP, Kooistra T, Slowikowski K, Kernin IJ, Deguine J, et al. A human model of asthma exacerbation reveals transcriptional programs and cell circuits specific to allergic asthma. Sci Immunol. 2023;8(83):eabq6352. doi: 10.1126/sciimmunol.abq6352.
- 126. Jakubzick CV, Randolph GJ, Henson PM. Monocyte differentiation and antigen-presenting functions. Nat Rev. Immunol. 2017;17:349-62. doi: 10.1038/nri.2017.28.
- 127. Guilliams M, Mildner A, Yona S. Developmental and functional heterogeneity of monocytes. Immunity 2018;49:595-613. doi: 10.1016/j.immuni.2018.10.005.
- 128. Hewitt RJ, Lloyd CM. Regulation of immune responses by the airway epithelial cell landscape. Nat Rev. Immunol. 2021;21:347-362. doi: 10.1038/s41577-020-00477-9.

- 129. Holgate ST, Lackie P, Wilson S, Roche W, Davies D. Bronchial epithelium as a key regulator of airway allergen sensitization and remodeling in asthma. Am J Respir Crit Care Med. 2000;162:S113-7. doi: 10.1164/ajrccm.162.supplement_2.ras-12.
- 130. Lambrecht BN, Hammad H. Allergens and the airway epithelium response: Gateway to allergic sensitization. J. Allergy Clin Immunol. 2014;134:499-507 doi: 10.1016/j.jaci.2014.06.036.
- 131. Van Cleemput J, Poelaert KCK, Laval K, Impens F, Van den Broeck W, Gevaert K, et al. Pollens destroy respiratory epithelial cell anchors and drive alphaherpesvirus infection. Sci Rep. 2019;9:4787. doi: 10.1038/s41598-019-41305-y.
- 132. Blume C, Swindle EJ, Dennison P, Jayasekera NP, Dudley S, Monk P, et al. Barrier responses of human bronchial epithelial cells to grass pollen exposure. Eur Respir J. 2013;42(1):87-97. doi: 10.1183/09031936.00075612.
- 133. Shaaban R, Zureik M, Soussan D, Anto JM, Heinrich J, Janson C, et al. Allergic rhinitis and onset of bronchial hyperresponsiveness: a

- population-based study. Am J Respir Crit Care Med. 2007;176:659-666. doi: 10.1164/rccm.200703-427OC.
- 134. Huang Y, Qiu C. Research advances in airway remodeling in asthma: a narrative review. Ann Transl Med. 2022;10(18):1023. doi: 10.21037/atm-22-2835.
- 135. Dekkers BG, Pehlic A, Mariani R, Bos IS, Meurs H, Zaagsma J. Glucocorticosteroids and β_2 -adrenoceptor agonists synergize to inhibit airway smooth muscle remodeling. J Pharmacol Exp Ther. 2012;342:780-7. doi: 10.1124/jpet.112.195867.
- Vanacker NJ, Palmans E, Kips JC, Pauwels RA. Fluticasone inhibits but does not reverse allergen-induced structural airway changes. Am J Respir Crit Care Med. 2001;163:674-9. doi: 10.1164/ajrccm.163.3.2004160.
- 137. Cazes E, Giron-Michel J, Baouz S, Doucet C, Cagnoni F, Oddera S, et al. Novel Anti-inflammatory Effects of the Inhaled Corticosteroid Fluticasone Propionate During Lung Myofibroblastic Differentiation. J Immunol. 2001;167(9):5329-37. doi: 10.4049/jimmunol.167.9.5329.

POSITION PAPER

Lorenzo Cecchi¹, Antonino Musarra^{2,*}, Kliljeda Jaubashi³, Alessandro Maria Marra⁴⁰, Matteo Martini^{5,60}, Francesco Papia⁷, Giuseppe Valenti⁷, Baoran Yang⁸, Adriano Vaghi^{9,**}, Maria Beatrice Bilò^{5,6}

EUR ANN ALLERGY CLIN IMMUNOL

Pollen-induced asthma: diagnostic and therapeutic implications

- ¹Allergy and Immunology Unit, San Giovanni di Dio Hospital, USL Toscana Centro, Florence, Italy
- ²Allergy Unit, Casa della Salute di Scilla, Scilla, Reggio Calabria, Italy
- ³Pulmonology Unit, ASST Santi Paolo Carlo, Milan, Italy
- ⁴Pulmonology Unit, ASST Rhodense, Garbagnate Milanese Hospital, Milan, Italy
- ⁵Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Italy
- ⁶Allergy Unit, Department of Internal Medicine, University Hospital delle Marche, Ancona, Italy
- Allergology and Pulmonology Unit, Provincial Outpatient Center of Palermo, Palermo, Italy
- ⁸Allergy Clinical Immunology and Rheumatology Unit, ASST Carlo Poma, Mantua, Italy
- Former Head of Pneumology and Chief of the Department of Medicine and Rehabilitation, Guido Salvini Hospital-ASST Rhodense, Garbagnate Milanese, Milan, Italy

*Joint first co-authorship

*Joint senior co-authorship

KEY WORDS

Pollen-induced asthma; phenotype; asthma treatment; asthma diagnosis.

Corresponding author

Matteo Martini Allergy Unit Department of Internal Medicine University Hospital delle Marche; Department of Clinical and Molecular Sciences Marche Polytechnic University via Conca 71 60126 Ancona, Italy ORCID: 0000-0001-9873-9695 E-mail: matteo.martini.med@gmail.com

10.23822/EurAnnACI.1764-1489.408

Evidence supports the hypothesis of pollen-induced asthma as a specific asthma phenotype, with defined clinical features and tailored pathways for its clini-

The probability of diagnosis varies significantly in the pollen season, in which allergic patients are symptomatic, as compared to asymptomatic periods outside the pollen season. In this context, a novel diagnostic scheme for pollen-induced asthma has been developed.

Pollen exposure is the key risk factor for symptoms and exacerbations. Therefore, we proposed a therapeutic algorithm for pollen-induced asthma based on a risk stratification model that considers the medical history of the patients and the measurement of objective markers, allowing a tailored therapeutic approach.

IMPACT STATEMENT

Pollen-induced asthma can be considered a specific asthma phenotype, with defined clinical features and tailored diagnostic and therapeutic pathways for its clinical management.

Introduction

Pollen-induced asthma (PIA) could be considered a specific phenotype. As reported by Cecchi et al. (1), pollen allergenicity depends not only on genetic and environmental factors, but also on immunostimulatory components of the pollen matrix, that contribute to airway disease and may represent a defining feature of allergic asthma.

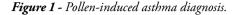
A phenotype is commonly defined as "the visible characteristics of an organism resulting from the interactions between its genetic patrimony and the environment". In this article, we will adopt an operational description, useful from a clinical point of view. Therefore, by asthma phenotype we mean "the characteristics of the disease, single or in combination, which describe the difference between individuals affected by the same disease, and which are correlated with clinical outcomes: clinical history and symptoms (onset, duration, control of symptoms, exacerbations), impaired respiratory function, disease progression, biomarkers, comorbidities and response to the treatment". Thus, the identification of specific phenotypes should have a predictive value in terms of clinical outcomes and response to therapy (2-4).

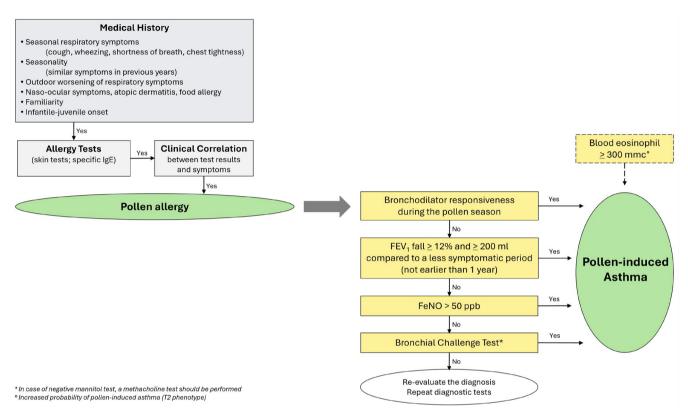
The Global Initiative for Asthma (GINA) document highlights the importance of phenotyping in severe asthma for the purpose of indicating biological drugs, while, although the definition recognizes that asthma is a heterogeneous disease, the identification of the phenotypes of mild-moderate asthma is not considered relevant because the therapeutic approach recommended in these patients is in any case independent of the phenotypes (5). Evidence supporting PIA as a specific phenotype can be derived using both a down-type investigation methodology (expert clinical judgement) and an unsupervised one (button up, cluster analysis):

- Pollen-induced asthma as a clinical phenotype: respiratory symptoms, exacerbations, impaired respiratory function, and increase in T2 biomarkers are all elements that are quantitatively linked to the seasonal exposure to pollen to which the patient is sensitized, while in the remaining period of year the patient remains asymptomatic (1). The strategy for evaluating asthma control, in particular the risk of exacerbations and clinical worsening, is strongly influenced by exposure to allergens. Similar to the severe asthma phenotypes, for PIA a targeted therapy is available, represented by specific immunotherapy, as well as a mainly seasonal symptomatic and anti-inflammatory pharmacological therapy.
- Pollen-induced asthma phenotype identified with cluster analysis: three large cohort studies using different clustering techniques to describe possible asthma phenotypes (SARP, U-BI-OPRED, UK cohort), identified a cluster characterized by mild allergic asthma (cluster 1 in the SARP cohort and cluster 3 in the U-BIOPRED cohort), with characteristics compatible with those above described as PIA (6-8). Despite the difference between the studies, Kaur et al. (3) identified 4 phenotypes: 1) early onset mild allergic asthma; 2) early onset moderate-severe allergic asthma; 3) late onset non-allergic eosinophilic asthma; 4) late onset non-allergic non-eosinophilic asthma. The main factors discriminating the heterogeneity of asthma common to the different phenotypes are the age of onset, respiratory function, atopy and eosinophils. Other patient characteristics, such as sex, obesity and smoking, although commonly detected, play a less important role when comparing studies.

Altogether, the identification of PIA as a clinical phenotype has a predictive value in terms of clinical outcomes and response to therapy (4). According to Han *et al.* (4), it is possible to identify a clinical phenotype when subjects are characterized by similar clinical presentations (respiratory symptoms occurring during the period of exposure to pollen), pathogenic mechanisms, diagnostic pathways, biomarkers, and availability of an endotype-specific therapy (disease modifying such as immunotherapy).

Materials and methods


A narrative systematic review of the literature was conducted on Medline to identify English papers published up to March 31, 2024. Hand searching of references of interest was also performed within the selected studies. The search strategy included papers with the terms "asthma" and "pollen/allergic" asthma in title/abstract, associated with at least one keyword, in the title/abstract, for each of the following domains: adherence to medications, risk of exacerbations, diagnosis, and treatment.


The research and selection of the studies were performed independently by five allergists, who collected and summarized the data from the studies. All the authors contributed to the definition of the research questions and related keywords, and to the final selection of the studies to be included in the systematic review. Considering the paucity of data about PIA and the low-quality evidence of the obtained studies, a formal process to assess the certainty in the body of evidence or the strength of the recommendations was not performed. Consensus was sought from a panel of asthma experts from the Asthma Interest Group of AAIITO (Association of Italian Hospital Allergists and Immunologists), with a formal voting process implemented in case of disagreement during the discussion. The final consensus paper was reviewed and approved by all the authors.

Pollen-induced asthma: diagnostic flow chart

Allergic asthma is the most common asthma phenotype, characterized by early onset, immunoglobulin type E (IgE) sensitization to allergens, IgE-related Th2-mediated background (9). Allergic rhinitis is a common comorbidity of asthma and, in the case of PIA, is observed in the vast majority of patients, over 80% (10). Usually, the diagnosis of PIA is suspected during the symptomatic period of exposure to the pollen to which patients are sensitized. The proposed diagnostic path for PIA is summarized in the flow chart (**figure 1**).

The process starts from the medical history, that may suggest the presence of a pollen-induced respiratory disease, followed by allergy tests and assessment of the compatibility between the seasonality of symptoms and the positivity towards the identified allergens. In fact, the presence of a positive skin test or positive sIgE does not necessarily mean that the allergen is causing symptoms and

there is still no evidence regarding sIgE thresholds necessary to confirm or exclude clinical disease (5, 11). The clinical relevance of sensitization needs to be confirmed by patient's history (5, 11). A recent diagnostic technique, known as "component resolved diagnostics" (CRD) is used to determine the specific molecules (or components) against which the IgE have been produced, to distinguish between genuine sensitization and clinically irrelevant IgE cross-reactivity due to panallergens or carbohydrate determinants (12-14), and to guide the choice of allergen specific immunotherapy (AIT).

In the case of symptoms suggestive of asthma (cough, wheezing, chest tightness, shortness of breath, nocturnal awakenings for asthma) along with seasonal onset (*i.e.*, temporal association between symptoms and pollen exposure), a pollen-induced variability in expiratory lung function must be also documented to confirm the diagnosis of PIA. The first line recommended test is spirometry showing a decrease of \geq 12% and \geq 200 ml compared to a previous test carried out in a less symptomatic period but not earlier than one year (5, 15). This diagnostic process can be carried out in any clinic where a spirometer is available, even a portable one; the only limiting factor is the correct technical execution of

the test. A bronchodilation test with SABA during pollen exposure is recommended, as a \geq 12% and \geq 200 ml increase in FEV1 confirms the diagnosis of PIA. It was not considered appropriate to establish the finding of obstructive spirometry, with FEV1/FVC < the lower limit of normal (LLN) or < 75% (5, 15-17), as a pre-condition for carrying out the bronchodilation test, as the patients with PIA frequently show non-obstructive spirometry, especially when the prevalent symptom is cough. On the other hand, the fact that in these patients the respiratory parameters are frequently normal reduces the probability of a positive bronchodilation test, thereby limiting the sensitivity of the test, even if the specificity is good.

A negative bronchodilation test does not exclude a diagnosis of PIA: in this case it is suggested to perform a direct (methacholine) or indirect (mannitol) bronchial challenge during the pollen exposure, if the FEV1 change from extra-pollen period to pollen period is inconclusive.

A positive result with mannitol (PD15 < 635 mg) is indicative of a high degree of bronchial inflammation, but this test is less sensitive, although more specific, than the test with methacholine using a cut-off value of PC20 < 8 mg/ml (18-20). It will be the

doctor's choice to carry out the test with mannitol first, being more informative regarding the activity of the inflammatory processes and easier in the execution. In the event of a negative result with the mannitol test, a test with methacholine should be performed (18). If even in this case the result is negative, the diagnosis of asthma can be excluded or, if the suspicion of asthma remains, the test can be repeated in a more symptomatic period (18). It is important to underline that in PIA, airway hyperresponsiveness (AHR) increases and can have clinically diagnostic value only during the pollen exposure (21, 22).

GINA report suggests lung function testing with the handled device peak expiratory flow (PEF) meter, when spirometry is not available, to assess excessive variability in expiratory lung function (5). Although PEF is less reliable than spirometry parameters, it is better than relying on symptoms alone.

The assessment of T2 inflammation should always be included in the diagnostic work-up for PIA, using appropriate biomarkers. Therefore, FeNO testing should be also performed, being a surrogate measure of eosinophilic lung inflammation, which could persist even in the absence of overt respiratory symptoms (23, 24). This test is recommended if spirometry is not available: the guidelines from the British Thoracic Society, the National Institute for Health and Care Excellence, the Scottish Intercollegiate Guidelines Network (BTS/NICE/SIGN), and from the European Respiratory Society (ERS) suggest FeNO measurement as a part of the diagnostic work-up in adult patients with suspected asthma, in whom the diagnosis is not established based by initial spirometry combined with bronchodilator responsiveness testing (15, 16). Values > 50 ppb are considered diagnostic for asthma (16, 25). This cut off is higher than the one previously recommended in the previous edition of NICE guidelines (40 ppb) and is considered more useful because it is characterized by greater specificity, although less sensitivity (17); this is particularly important if considering that atopic patients may show an increase in FeNO during the pollen season, especially in polysensitized individuals where a dramatic increase was observed (26).

Importantly, FeNO testing is part of the diagnostic work-up in the GARD (Global Alliance Against Chronic Respiratory Diseases) recommendations for the management of severe asthma (27) and is included in the essential levels of assistance (LEA) in Italy, *i.e.*, the services and benefits that the National Health Service (SSN) is required to provide to all citizens.

The higher the FeNO value measured, the greater the probability of asthma (17). However, a negative test does not exclude asthma, especially if the patient has taken oral glucocorticoids or used ICS regularly or as needed (28). On the other hand, high FeNO levels may also be observed in non-asthmatic respiratory conditions, as eosinophilic bronchitis and allergic rhinitis (5, 29). In the proposed diagnostic work-up, FeNO measurement is suggested before bronchial challenge, as its execution is simpler, although its use is not widespread due to lack of the adequate

equipment. The eosinophil count was not included as a diagnostic test, even if data are available in this regard, because of the variability of cut-off values between studies (3.4% and 360, 150, 500, 300 eosinophils/mmc) (25, 30-32); nevertheless, it is an important factor that may enhance the pre-test probability of confirming a diagnosis of PIA. The bronchial allergen challenge is not mentioned in the algorithm as, due to both safety and cost-efficiency concerns, its use is currently restricted to specialized centers with experienced staff, with protocols tailored to mild asthmatics for research purposes.

In conclusion, the probability of diagnosis of PIA phenotype can vary significantly in the pollination period, in which sensitized patients are symptomatic, as compared to asymptomatic periods outside the pollen season. Therefore, negative diagnostic tests should be contextualized with the presence of symptoms and the pollen calendar, to reduce the possibility of false negative diagnoses.

Risk stratification and control assessment in the pollen-induced asthma phenotype

Asthma control includes two domains: symptoms (impairment) and future risk (5, 33, 34). The assessment can be carried out with validated questionnaires, such as the ACT, which investigates a previous period of 4 weeks. In the PIA phenotype, the results on symptoms (impairment) can be highly discordant if carried out in a period of exposure to pollen compared to a period outside and far from the pollen season. Similarly, the interpretation of the "future risk" reflects the same peculiarity because, unlike other forms of asthma, in this phenotype the major trigger factor for exacerbations, *i.e.*, pollen exposure, is clearly identifiable and directly correlated, in a quantitative measure, to the risk of exacerbations (**figure 2**). Therefore, the information obtained from assessment tools should be contextualized to the period of the year investigated and the pollen calendar.

The predictability of the main future risk plays a central role in the clinical management of PIA. Even patients with mild asthma may experience episodes of severe exacerbations (5). Indeed, a significant proportion of subjects who have experienced episodes of "near-fatal asthma" or death from asthma were atopic and were classified as mild asthmatics, frequently not taking any controller ICS-based therapy (5, 35), suggesting that the impairment domain and the future risk domain are not closely related (36-38). These observations suggest that in PIA the risk stratification should be carried out in the pre-seasonal period, to identify the most suitable pharmacological strategy.

Figure 2 summarizes the factors associated with an increased risk of exacerbations in patients with PIA.

An accurate medical history can be sufficient to identify subjects who are more likely to develop symptoms and are at risk of exacerbations during periods of maximum exposure to pollen. Notably, symptoms that are proxies of exacerbations and are possible markers of AHR, that affects the extent of the broncho-

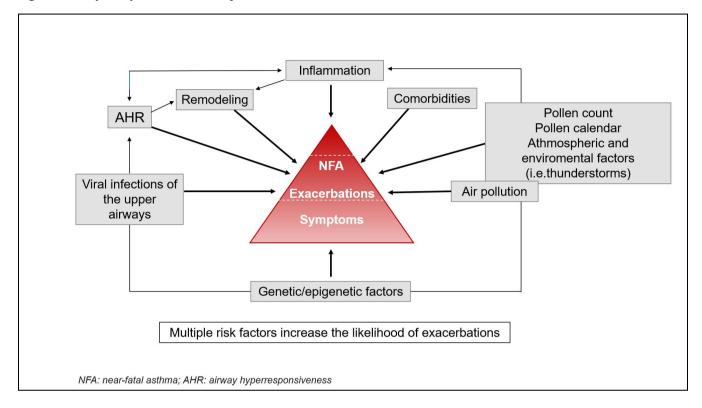


Figure 2 - Risk factors for exacerbations in pollen-induced asthma.

spasm response to inhaled allergens, should be carefully identified (22, 39). They include wheezing, chest tightness, shortness of breath, and nocturnal awakenings.

From a clinical perspective, the main risk factor is a history of exacerbations in the previous year, in particular during the pollen season. Both severe exacerbations, easier to detect and remember because they are characterized by the use of oral steroid therapy, and moderate exacerbations, mostly characterized by an increased frequency in the use of reliever drugs (34), should be assessed. Exacerbations are the result of the concomitance of multiple risk factors: exposure to pollen acts both as a predisposing factor, increasing T2 inflammation and AHR, and as a trigger for symptoms (40).

The onset of symptoms and, to a greater extent, an exacerbation, varies from subject to subject and in the same subject over time due to the co-presence or absence of different predisposing factors (genetic and epigenetic) and triggers, mostly pollen-related factors in PIA, in addition to the others (**figure 2**). This multifactorial contribution explains the high possible variability of seasonal symptoms (41-43).

In addition to previous exacerbations, for risk stratification it is useful to investigate the symptoms that occurred during the

previous pollen season and their frequency. The most specific symptom is wheezing, an indicator of the presence of a significant obstruction (44, 45), although there is no clear correlation between obstruction and the onset of wheezing. Therefore, wheezing is a cardinal symptom to be assessed both in the previous pollen season and in the months preceding the control examination, reflecting a significant degree of bronchoconstriction. The presence of wheezing, coughing and chest tightness are associated with AHR especially if they appear occasionally after episodes of hyperventilation, as during running in children and young adults, or when the patient sings or speaks loudly for a long time (46-48).

A further element to assess is the persistence of respiratory symptoms (as cough, chest tightness) after viral infection of the upper airways, which the patient often does not pay attention to, believing it to be a normal evolution of the infection (41).

Correct perception of the obstruction by the patient is an important factor in evaluating the reliability of the reported symptoms. In clinical practice, hypoperception can be identified in the presence of a discrepancy between the level of obstruction verified by spirometry and the symptoms reported, or more generally by an overestimation of the patient's control of symptoms com-

pared to the evaluation of control obtained through questionnaires such as ACT, all factors that may increase the risk of exacerbations (49, 50).

The presence of comorbidities, in particular allergic rhinitis, gastro-esophageal reflux and obesity, also influence the risk of exacerbations (41).

Risk stratification can be further improved by using biomarkers related to bronchial inflammation: the greater the degree of inflammation in the pre-seasonal period, the greater the probability that the further release of T2 cytokines induced by allergic reactions can trigger seasonal symptoms.

High levels of FeNO reflect the presence of T2 inflammation and are indicators of positive response to ICS therapy. In previous versions of ERS/ATS guidelines, FeNO levels are considered low below 25 ppb, intermediate between 25-50 ppb and high > 50 ppb (28). Therefore, in patients with PIA, the finding of levels above 25 ppb in a period of non-exposure to pollen may be considered an indicator of future risk, and values above 40-50 ppb high risk; asymptomatic sensitized subjects in the period of non-exposure to pollen generally do not have significantly increased FeNO levels (26).

Different FeNO thresholds have been used, in mild allergic asthmatic subjects with FeNO values lower than the cut-off value and with positive clinical outcomes, to predict the possibility of reducing/suspending ICS (51, 52).

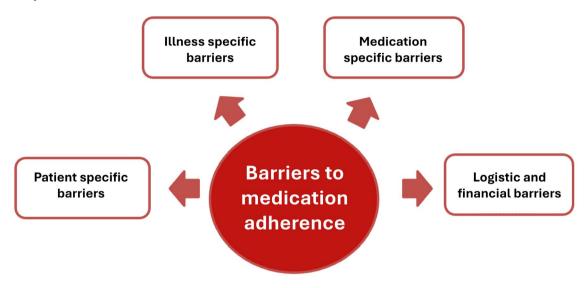
Regarding circulating eosinophils, large studies (Copenhagen General Population Study) including to a greater extent patients with mild asthma, indicate that high levels (400 eosinophils/mm³) predict an increased risk of serious exacerbations and poor asthma control (53, 54). In addition, the *post-hoc* analysis of the Atlantis study showed that 16% and 26% of patients with mild asthma, respectively in the GINA 1-2 steps, have a post-bronchodilator FEV1/FVC < LLN and this functional impairment is related to eosinophilic inflammation and an increased risk of exacerbations (55). The concomitant presence of high levels of FeNO and circulating eosinophils is also useful to identify subjects with greater risk of exacerbations. However, it should be noted that also smokers may show higher levels of circulating eosinophils and low levels of FeNO (56, 57).

The presence of an AHR together with allergic sensitization is known to be a prerequisite for the development of an early allergic response in terms of airway obstruction (58-60). High levels of AHR, especially if detected prior to the pollination season, also may constitute an important risk factor for the development of symptoms and exacerbations during maximum exposure to pollen (39, 61-68). Importantly, the finding of a concomitant fall in FEV1 and FVC during the bronchial challenge with methacholine allows to identify patients, even those suffering from mild asthma, who are at risk of episodes of near-fatal asthma, as there is a concomitant obstruction of the proximal and distal airways which can lead to respiratory arrest (69, 70).

Adherence to asthma medication during the pollen season

Although in clinical studies asthma can be well controlled in most patients with an appropriate therapeutic strategy (71), in clinical practice non-adherence with prescribed medications is very common and represents a significant barrier to optimal disease management.

To date, scientific literature does not report data on the adherence to medication in patients specifically affected by PIA. The available evidence comes from studies conducted on patients with allergic (sensitive to pollen or other allergens) or non-allergic asthma. In any case, the problem of therapeutic adherence appears to be independent of the trigger factors. Therefore, the findings emerging from these studies may be transferable to PIA. Approximately 50% of adults and children on long-term therapy for asthma fail to take medication at least part of the time, resulting in poor quality of life, reduced work performance, and increased risk of exacerbation, associated with increased direct and indirect costs of disease management (5, 72, 73). Adherence may also decrease over time: a real-world study showed that adherence significantly declined with subsequent prescriptions (74). Furthermore, undetected suboptimal adherence, including the correct use of the inhalers, may be interpreted as poor therapeutic response, perpetuating a cycle of uncontrolled asthma symptoms, review and therapy escalation (75-77).


Several factors may influence therapeutic adherence and persistence, like personal and individual factors, psychological issues, health beliefs and behaviors, the clinician-patient relationship, factors linked to the disease (progression, stability, exacerbations), to the treatment (complexity of current medications, difficult-to-use inhaler, frequency of dosing, side-effects), or to costs and access (figure 3) (5, 78, 79).

The simplification of the therapeutic regimen, with prescription of once daily medications and easy-to-use inhalers, are important factors for achieving good compliance (5, 80).

On the other hand, several studies suggest that one of the determinants of poor adherence is the perception that the medication should be used in response to symptoms more than on a regular basis (81-83). Not surprisingly, treatment discontinuation is significantly higher in those who seek medical assistance for symptom worsening. The findings reflect an incongruence between the medical perspective, emphatizing proactive control through prevention of symptoms and exacerbations, and the patient's perspective, where to some extent symptoms are regarded as part of having asthma, rather than a sign that their asthma is poorly controlled (84).

In the case of allergen immunotherapy (AIT), a period of repeated administration for at least 3 years is required for achieving sustained symptom relief and potentially altering the disease course. This long-term commitment can be challenging for patients to maintain. Indeed, despite long term benefits, real life studies on

Figure 3 - Key barriers to medication in chronic disease.

Adapted from Kvarnström et al. 2021 (79).

patients with allergic rhinitis and asthma showed that at 3 years the overall adherence to AIT was below 40% (85, 86). Adherence was higher in the first year of treatment, in children and, in some studies, with the subcutaneous formulation (SCIT) *versus* the sublingual formulation (SLIT) (85, 86). Reasons for treatment discontinuation are due to factors like long duration of treatment, need for regular injections or daily sublingual administration, perception of poor efficacy, costs, and potential side effects (85, 86). In conclusion, evidence on the adherence to medication regimens in patients specifically affected by PIA is poor. On the other hand, therapeutic adherence in asthma remains a recurrent problem, regardless of the trigger factor.

Risk of (severe) exacerbations: the unpredictability of exposure

Pollen exposure is one of the factors associated with worsening of the symptoms of allergic rhinitis and asthma (87). The impact of pollen on respiratory health can be particularly significant in children, given that more than half of pediatric asthma cases are thought to have an allergic component (40, 88).

In the study by De Roos *et al.* (89) on subjects aged < 18 years followed over a 5-year period, an increased odd of asthma exacerbation was found in association with the exposure to tree pollen. Even low pollen levels (\leq 5 grains/m³) were associated with small risk, with an exposure-response pattern of increasing odds with higher pollen level. A 64% increased risk was observed at pollen levels > 1,000 grains/m³; for grasses, asthma exacerbations were associated with exposure to 52 grains/m³ of pollen,

while no correlation was shown with exposure to ragweed pollen and other pollen.

An Australian study by Shrestha *et al.* (90) assessed the role of ambient levels of different pollens on hospital admissions for asthma over a 5-year period in 2,098 children and adolescents. The results showed a significant correlation between Plantago and Parietaria pollen peaks and the rate of hospitalization for bronchial asthma, especially in younger children of 2-5 years of age; specifically, an increase in pollen concentration of 50 grains/m³ was strongly associated with the risk of hospitalization. Similarly to other studies, a trend toward a greater pollen effect was observed in boys. The correlation was higher in colder seasons, but this finding could also be related to viral infections, so it is unclear whether pollen stimulation was the primary trigger.

The association between outdoor pollen and childhood asthma hospitalizations was examined in a systematic review (91). Although there was a substantial heterogeneity among studies related to pollen species, geographical areas, method of analysis used to estimate the effect size and differences in lagged day effects considered for the analysis, the results showed that globally grass and birch pollen were important triggers of childhood asthma hospitalization: an increase in 10 grass pollen grains/m³ was associated with a 3% increase in admissions for asthma and an extreme pollen day (> 100g/m³) could lead to a 30% increase in hospitalizations for asthma.

Interestingly, a study on a large cohort of 47,456 children admitted to hospital for asthma showed that grass pollen exposure was associated with higher readmission rates for asthma, supporting

the importance of target interventions for asthmatic children prior the pollen season (92).

In the study by Lappe et al. (93) covering a 26-year period of observation, a strong association was found between 9 of the 13 pollen varieties analyzed (grasses, nettle, pigweed, birch, maple, pine, oak, willow, sycamore, mulberry) and Emergency Departement (ED) visits for asthma and wheeze, with a 1-8% increase in ED admissions per standard deviation increases in pollen, which is consistent with the results from other studies (94). In general, the strongest association was observed in younger people and in Afro-Americans subjects, although the data varied by pollen taxa. Birch pollen was shown to be associated to asthma exacerbations especially in Northern European countries and North America. A Swedish study found an increase in respiratory symptoms and use of respiratory drugs alongside a reduction in lung function parameters during the pollen season (95). Moreover, pollen exposure increased the susceptibility to adverse respiratory effects induced by pollutants (particulate matters and O₃).

The epidemiological prospective study by Dominiguez-Ortega (96) compared clinical, functional and pathophysiological outcomes during and outside the pollen season in 101 adults diagnosed with allergic asthma and rhinitis who manifested exclusively seasonal symptoms caused by grasses and/or olive tree. The results show that most patients experienced symptoms, lung function abnormalities and airway-inflammation (as reflected by measurement of FeNO) exclusively during the pollen season, although a few continue to experience abnormalities outside the exposure period.

The occurrence of thunderstorms during pollen season of some taxa may lead to the so called "thunderstorm asthma", an epidemic of allergic asthma outbreaks, sometimes also severe asthma attacks, as reported in many areas of the world (97). The Melbourne thunderstorm asthma epidemic during the peak grass pollen season in November 2016 was unprecedented in scale and impact, with a large number of people having breathing difficulties and about 9900 patients' presentations at hospital emergency departments (98, 99). A systematic analysis of hospital's patients in Melbourne aged ≥16 years with thunderstorm asthma was conducted by Lee et al. (98), to identify key risk factors. Of 85 adult patients assessed, the majority (60%) had no prior diagnosis of asthma. However, allergic rhinitis during the grass pollen season was almost universal (99%), as were ryegrass pollen sensitization (100%) and exposure to the outdoor environment during the thunderstorm (94%). Airborne pollen levels on the thunderstorm day were extreme (102 grains/m³) (98). The results suggest that ryegrass pollen sensitization and clinical allergic rhinitis define the adult population at risk for thunderstorm asthma, with acute allergen exposure as a trigger factor. The size of ryegrass pollen grains is > 35 μm in diameter, but stormy moisture may cause their rupture into respirable 3 µm granules that can easily penetrate deeply into the airways and elicit respiratory symptoms in predisposed subjects.

Based on this evidence, thunderstorm asthma can be considered a model of PIA and a risk factor of severe exacerbations in patients with mild asthma, often undiagnosed, allergic asthma.

The management of pollen-induced asthma: a model of regular treatment?

The aim of asthma management should be to achieve the best possible long-term outcomes for the individual patient. This may include significant reduction (possibly the complete absence) of asthma daytime and nocturnal symptoms, to improve lung function, to prevent/minimize the risk of acute deterioration of asthma symptoms (exacerbations) and asthma-related death, provide optimal pharmacotherapy with a simple dosage schedule and minimal or no adverse effects and to allow the patients to have a normal or almost normal life. According to that, asthma may be considered under control when all these outcomes are achieved (5, 100-104).

Poor symptom control of asthma is associated with an increased risk of exacerbations, but even people with good symptom control or seemingly mild asthma can still be at risk of severe exacerbations (105), and even death (106). Thus, most guidelines recommend that asthma control should be assessed in two domains: 1) current symptom control and 2) risk factors for future poor asthma outcomes, particularly exacerbations (*e.g.*, smoke, history of exacerbations, blood eosinophilia or high FeNO, environmental exposure) (5, 100-104).

The definition of asthma control mostly refers to the stability of clinical and functional parameters. However, some authors suggest that the inflammatory profile of an asthmatic patient should also be considered in the evaluation of asthma control (107). In this regard, within populations of patients with allergic rhinitis or intermittent asthma, some subjects show evidence of ongoing bronchial inflammation, *i.e.*, low pH and high IL-5 concentrations in the exhaled breath condensate, as well as increased FeNO levels (107, 108).

The question whether subclinical airway inflammation may determine the risk of relapse later in future was addressed in a large population-cohort study (109). The results demonstrated that a number of inflammatory biomarkers was independently associated with future respiratory outcomes or accelerated lung function decline. In this respect, GINA document points out that increased levels of type 2 inflammatory markers are risk factors for poor asthma outcomes (5).

It should be also underlined that each bronchoconstrictor event determines epithelial and bronchial muscle stress (mechanotransduction), which translates into the release of cytokines and growth factors that accelerate bronchial remodeling and inflammation, generating positive feedback mechanisms that tend to perpetuate the persistence of asthma (110-114). These findings have potential implications for asthma management, as the prevention of bronchoconstriction itself could be an important target, contributing to the reduction of inflammation.

As a consequence, ideal treatment strategies should be also aimed at controlling underlying airway inflammation and possibly prevent or slow down remodeling processes.

Inhaled corticosteroids (ICS), alone or in single inhaler combination with long acting beta 2 agonists (LABA), are the mainstay of asthma treatment and are recommended in several national guidelines as regular preventive therapy approach, in which the dose of ICS is appropriate to the severity of disease and can be increased as necessary, and decreased, when possible, to achieve and maintain disease control (100-104). The frequency of rescue medication use, such as the short acting beta2 agonists (SABA) to relieve symptoms, is considered a reliable measure of asthma control. In mild-moderate asthma, the guidelines also consider the use of a single combination inhaler of ICS/LABA for maintenance and reliever therapy (MART), which might suit some individuals (5). It relies on the rapid onset of reliever effect with formoterol and by including a low dose of inhaled corticosteroid it ensures that, as the need for a reliever increases, the dose of preventer medication is also increased.

The analysis of MART clinical trials demonstrated that this strategy was at least as effective as a regular treatment with other ICS/LABA combinations plus SABA as needed in the prevention of severe exacerbations, but it is associated with a significant level of symptoms (54% of the days) and frequent use of rescue medication, that may be considered as a sign of an incomplete asthma control, particularly when these events are frequently reported (115-119). Notably, Pavord *et al.* (120) showed that sputum eosinophils and endobronchial biopsy eosinophils were significantly lower following a regular treatment with ICS/LABA plus SABA compared to MART strategy, where a trend towards increased cellularity was observed.

Interestingly, three surveys have been conducted in 16 countries all over the world to understand current treatment approaches for patients with asthma and how these align with the latest GINA recommendations in real-world clinical practice. Altogether 2,482 physicians (mainly pulmonologists and general practitioners) and 4,266 asthmatic patients have been enrolled (121-123). The results show important rates of poor asthma control and SABA use across all participating countries. Patients appear to overestimate their level of asthma control, that is not aligned with their reporting of symptoms/limitations. Physicians generally rated symptom control over exacerbation reduction as their main treatment goal for patients with mild to moderate asthma. This was consistent with prioritization of symptoms over exacerbations when prescribing daily maintenance medication. The consolidated proactive treatment with ICS/LABA and as-needed SABA remains the preferred initial approach. Furthermore, the co-prescription of MART therapy and SABA (frequently requested by the patients themselves) suggests confusion between reliever strategies in real world or alternatively is suggestive of patients who may remain uncontrolled on MART therapy and feel the need for a reliever to manage their asthma symptoms (122).

Another aspect to be considered is the hypoperception of airway obstruction by the patients that was reported in approximately 26% of asthmatics; these patients are poor judges of their clinical conditions, and this under-estimation may lead to poor adherence to maintenance therapy, inadequate treatment of airway inflammation and airway hyperresponsiveness and increased risk for exacerbations and episodes of near-fatal asthma.

However, the model of pharmacological treatment proposed in the guidelines, largely based on a similar type of therapeutic response for all patients, does not consider, in mild-moderate asthma, the possible different phenotypes that may require a personalized approach. In this respect, the PIA phenotype is pathognomonic, as the assessment of the impairment domain (symptoms), on which the control assessment is largely based, varies considerably depending on the exposure period to pollen, given that the questionnaires (such as ACT) often investigate the symptoms relating to the previous few days or weeks.

Furthermore, unlike other clinical phenotypes, in PIA the main future risk factor, the seasonal exposure to pollen, is known and partly predictable. This consideration is, however, still insufficient for a rational therapeutic approach, which cannot necessarily be the same in all periods of the year and in all subjects.

For this reason, we have proposed the need to carry out a seasonal risk stratification, based on the risk factors of exacerbation previously described and shown in **figure 2**, using the considerations summarized in **table I**.

Consequentially, the proposed therapeutic algorithm that considers the risk stratification model is schematized in **figure 4**. In subjects at low risk, ICS/formoterol as needed or low dose

In subjects at low risk, ICS/formoterol as needed or low dose ICS whenever SABA is taken can be considered. In the event that the use of the rescue medication is > 2 days/week or in case of symptoms ≥ 2 days/week, it is recommended to switch to a fixed daily therapy.

In subjects stratified as high risk, we propose a maintenance daily therapy with ICS/LABA and SABA as needed, or daily maintenance ICS and as needed SABA or MART with ICS/formoterol from the beginning of the exposure period, determined on the basis of the pollen calendar. The strength of ICS (medium or high) is determined by the healthcare professional based on risk stratification; generally, in patients with PIA a medium strength is sufficient. In any case, the rapid variability of pollen exposure conditions can make it difficult to obtain a maximal bronchoprotective effect using a symptom-driven approach, as this achievement requires therapeutic continuity. In addition, the persistence of risk factors for the loss of asthma control, including comorbidities and increased biomarkers of airway inflammation, even in

Table I - Seasonal risk stratification.

	Indicators	High risk	Low risk	
Symptoms during pollen exposure	Severe exacerbations in the previous 12 months	≥ 1	None	
	Frequency of respiratory symptoms	≥ 1 time/week	None	
	Use of reliever	Regularly > 1 time/week	No, a few times	
Symptoms before pollen season	Persistent (> 1 week) respiratory symptoms* after airway viral infection	Yes	No	
	Respiratory symptoms* after hyperventilation (running, singing)	Yes	No	
	Respiratory symptoms* in the current and previous months	Yes	No	
Biomarkers assessed before pollen season	FeNO	≥ 40 ppb	< 25 ppb	
	Eosinophils	≥ 400 /mmc	< 150 /mmc	
Lung function before pollen season	Spirometry: airway obstruction	FEV1/FVC < LLN or < 75%	FEV1/FVC ≥ LLN or ≥ 75%	
	Spirometry: FEV1	< 80% predicted or > 10% fall versus previous control	Normal or ≥ 80% predicted unchanged from personal best	
	Spirometry: bronchial responsiveness test	≥ 12% and 200 ml	< 12% and 200 ml	
	Direct bronchial challenge (PC20)	High AHR: $PC20 < 1 \text{ mg/ml}$ Moderate AHR: $PC20 \ge 1 \le 4 \text{ mg/ml}$	Mild AHR > $4 \le 8 \text{ mg/ml}$ AHR borderline > $8/\text{mg/ml}$	
	Indirect bronchial challenge (PD15)	Positive to mannitol test: PD15 ≤ 635 mg mannitol	Negative to mannitol test: PD15 > 635 mg mannitol	
Other clinical features to consider	^Moderate-severe allergic rhinitis, rhinosinusitis, gastroesophageal reflux, obesity Impaired perception of bronchoconstriction (hypo-perceptors); perception reduced also in patients with high AHR			

^{*}Respiratory symptoms: cough, shortness of breath, wheezing, chest tightness; ^the risk increases if multiple comorbidities are present; AHR: airway hyperresponsiveness.

a patient with apparently minor daily symptoms, should be also considered for treatment optimization, to prevent negative outcomes. Therapy will be withheld or reduced based on the progression of symptoms and the resolution of triggering factors, supported by the pollen data.

In patients with PIA receiving seasonal therapy it is advisable to use a principle of maximum precaution, in particular in those considered at high risk, as they may experience severe exacerbations or even episodes of near-fatal asthma due to the rapid changes in the allergenic load to which they are exposed, in the presence of a high degree of AHR not previously highlighted and undertreated with ICS (35-37). In this respect, modeling studies based on published experimental and clinical data showed that a different degree of asthma control and bronchoprotection (*i.e.*, suppression of the AHR) as well as systemic activity can be achieved depending on the adherence to the therapeutic regimen and the type of ICS used (124).

None of the above-mentioned pharmacological therapies address the pathogenetic mechanism of allergic asthma. Conversely, AIT is the only therapeutic intervention able to induce both immune modifying effects and long-term efficacy.

Different efficacy results have been reported in relation to heterogeneity in terms of products used, routes of administration (subcutaneous – SCIT and sublingual – SLIT), study populations, and study designs compared to those commonly employed in pharmacological clinical trials of asthma (125, 126).

The efficacy of AIT in seasonal allergic asthma caused by grass pollen allergy and tree pollen allergy (the most frequently studied pollens considering their epidemiological load) has been proven in clinical trials and real-word studies, especially with SCIT (127-129).

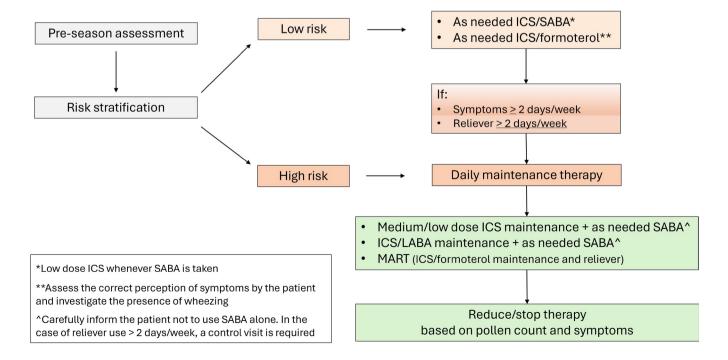
The large retrospective cohort study REACT analyzed German health insurance data from 2007 to 2017: the analysis showed that AIT prescription in patients with allergic asthma (compared

with a control group without AIT prescription) led to a lasting improvement in asthma control, lower medication consumption, and a decrease in the exacerbation rate (127). In addition, these effects even increased over time after the end of AIT and there was also an advantage for patients with asthma with regard to the occurrence of pneumonia and hospitalizations.

A population-based Danish study compared patients with asthma who received an AIT prescription with patients who did not receive an AIT prescription: in the 3 years following completion of the AIT prescription, there was a sustained reduction in the exacerbation rate (on average by 74% in patients with seasonal allergies and on average by 57% in patients with house dust mite allergies) compared with patients without an AIT prescription (128). The results of a real-world study involving a large sample of patients showed that sublingual AIT was associated with a significant reduction in the risk of new asthma events for up to eight years and also in the risk of asthma onset or worsening, for all ages and allergens evaluated (129). The results support the long-term effectiveness of sublingual AIT treatment of patients with allergic rhinitis with and without pre-existing asthma, as a relevant causal option for patients with respiratory allergies.

AIT is currently recommended for allergic asthma, if it is well documented that allergens elicit asthma symptoms and if asthma is controlled (130). Thus, AIT is considered as an additional ther-

apy for allergic asthma, and carried out after the initiation of adequate drug therapy for asthma. Ideally, inhaled therapy can be reduced during AIT or even stopped completely once AIT has been completed.


However, in case of patients with symptoms limited to the pollen season, AIT should be associated to a proper treatment according to the PIA therapeutic algorithm (**figure 4**).

Conclusions

Evidence supports the hypothesis of PIA as a specific asthma phenotype, characterized by substantial asymptomatic periods in which patients are not exposed to triggers, with allergic rhinitis being one of the most common comorbidities.

Although the pollen season represents the key factor affecting the risk of asthma outbreaks, pollen count, aerobiological data, the presence of polysensitivity that can overlap, and the meteorological conditions can also influence the clinical picture of the patients in different directions (38). In this context, a careful assessment of the clinical manifestations in the previous year and in the period before the pollen season, as well as the measurement of objective markers (FeNO, AHR, FEV1, circulating eosinophils), make it possible to stratify the risk of symptoms and exacerbations, allowing the therapeutic approach to be tailored in a rational manner during the seasonal exposure period.

Figure 4 - Therapeutic algorithm for pollen-induced asthma.

Effective disease control can be achieved through the use of therapeutic regimens containing ICS. Depending on patients' characteristics and risk factors, healthcare professionals and patients can share the decision on the best therapeutic strategy (131), considering effective bronchoprotection and the simplicity of regular once-daily administration of ICS/LABA, that favors the therapeutic adherence (132), and the flexibility of the MART strategy, which however may require more careful education and collaboration from the patient (133). In patients who, in previous years, have shown a loss of asthma control only in the season when they are exposed to sensitizing allergens, a seasonal therapy (i.e., therapy prescribed during periods of seasonal exposure) may be considered (133). In any case, the poor predictability of exposure to pollen, with its variations in concentration and allergenicity, highlights the importance of a preventive approach to reduce the risk of asthma outbreaks. Thus, starting daily therapy with low-dose ICS/LABA before the period of maximum allergic exposure could be advisable to increase the level of bronchoprotection (133).

Allergen-specific immunotherapy is the only curative treatment that can be used in association with standard pharmacological therapy in PIA, that may provide benefit, especially in subjects with comorbidities, such as allergic rhinitis, and may reduce drug burden (134).

Educating patients on proper symptom perception and adherence to treatment is also crucial for optimal disease control.

Fundings

GlaxoSmithKline S.p.A. provided financial and human resources to support the implementation of the project "The patient with pollen-induced asthma: from the unpredictability of risk to a possible management model". The company has been granted an exclusive license by AAIITO (Italian Association of Territorial and Hospital Allergologists and Immunologists) to access and use the information, results, and materials derived from the project.

Contributions

All authors equally contributed to the manuscript draft and critical revision for important intellectual content, to data collection, analysis and interpretation.

Conflict of interests

LC reports personal fees from Chiesi Farmaceutici (consulting), Thermofisher (consulting, talks), GlaxoSmithKline (consulting, talks), Astra Zeneca (consulting, talks), Menarini (talks, consulting), Novartis (consulting, talks), and Sanofi (consulting, talks). AM reports personal fee from Sanofi (talks) and GSK (consulting). KJ reports personal fee from Sanofi (talks) and GSK (consulting). AMM reports personal fees from GlaxoSmithKline (consulting). MM reports personal fees from Chiesi Far-

maceutici (consulting), GlaxoSmithKline (consulting, talks), and AstraZeneca (consulting). AV reports personal fees from Chiesi Farmaceutici (talks), GlaxoSmithKline (talks), AstraZeneca (talks), and Menarini (talks). MBB reports personal fees from ALK (consulting), AstraZeneca (talks), BluePrint (advisory board, talk), Gentili (talk), GSK (talks), Menarini (talks), and Sanofi (advisory board, talks). FP, GV, and BY report no conflict of interest.

References

- Cecchi C, Martini, Jaubashi K, Maria Marra AM, Papia F, et al. Pollen-induced asthma: a specific pheno-endotype of disease? Eur Ann Allergy Clin Immunol. 2025;57(5):xxx-xxx. doi: 10.23822/EurAnnACI.1764-1489.403.
- Kuruvilla ME, Lee FE, Lee GB. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin Rev Allergy Immunol. 2019;56(2):219-33. doi: 10.1007/s12016-018-8712-1.
- Kaur R, Chupp G. Phenotypes and endotypes of adult asthma: Moving toward precision medicine. J Allergy Clin Immunol. 2019;144(1):1-12. doi: 10.1016/j.jaci.2019.05.031.
- Han MK, Agusti A, Calverley PM, Celli BR, Criner G, Curtis JL, et al. Chronic obstructive pulmonary disease phenotypes: the future of COPD. Am J Respir Crit Care Med. 2010;182(5):598-604. doi: 10.1164/rccm.200912-1843CC.
- Global Initiative for Asthma Management and Prevention (GINA)

 update 2024. Available at: https://ginasthma.org/wp-content/uploads/2024/05/GINA-2024-Strategy-Report-24_05_22_WMS.pdf.
- Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med. 2010;181(4):315-23. doi: 10.1164/rccm.200906-0896OC.
- 7. Lefaudeux D, De Meulder B, Loza MJ, Peffer N, Rowe A, Baribaud F, et al. U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. J Allergy Clin Immunol. 2017;139(6):1797-807. doi: 10.1016/j.jaci.2016.08.048.
- 8. Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE, et al. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med. 2008;178(3):218-24. doi: 10.1164/rccm.200711-1754OC.
- Boonpiyathad T, Sözener ZC, Satitsuksanoa P, Akdis CA. Immunologic mechanisms in asthma. Semin Immunol. 2019;46:101333. doi: 10.1016/j.smim.2019.101333.
- Leynaert B, Neukirch C, Kony S, Guénégou A, Bousquet J, Aubier M, et al. Association between asthma and rhinitis according to atopic sensitization in a population-based study. J Allergy Clin Immunol. 2004;113(1):86-93. doi: 10.1016/j.jaci.2003.10.010.
- 11. Manzanares B, González R, Serrano P, Navas A, Alonso C, Fernandez L, et al. Back to basics: likelihood ratios for olive and grass pollen specific IgE in seasonal allergic rhinitis. Front Allergy. 2023;4:1241650. doi: 10.3389/falgy.2023.1241650.
- 12. Xie ZJ, Guan K, Yin J. Advances in the clinical and mechanism research of pollen induced seasonal allergic asthma. Am J Clin Exp Immunol. 2019;8(1):1-8.
- 13. Callery EL, Keymer C, Barnes NA, Rowbottom AW. Component-resolved diagnostics in the clinical and laboratory investigation of allergy. Ann Clin Biochem. 2020;57(1):26-35. doi: 10.1177/0004563219877434.

- Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, et al. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol. 2023;34 Suppl 28:e13854. doi: 10.1111/pai.13854.
- Asthma: diagnosis, monitoring and chronic asthma management (BTS, NICE, SIGN). London: National Institute for Health and Care Excellence (NICE); 2024.
- 16. Louis R, Satia I, Ojanguren I, Schleich F, Bonini M, Tonia T, et al. European Respiratory Society guidelines for the diagnosis of asthma in adults. Eur Respir J. 2022;60(3):2101585. doi: 10.1183/13993003.01585-2021.
- 17. National Institute for Health and Care Excellence (NICE). NICE guideline NG80. Asthma: diagnosis, monitoring and chronic asthma management. 29 November 2017. Available at: https://www.nice.org.uk/guidance/ng80.
- 18. Vaghi A, Bilò MB, Bini F, Cecchi L, Micheletto C, Musarra A. The added value of targeting airway hyperresponsiveness by blocking TSLP in the management of severe asthma. Eur Ann Allergy Clin Immunol. 2024. doi: 10.23822/EurAnnACI.1764-1489.376. Epub ahead of print.
- Cockcroft DW. Direct challenge tests: Airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest. 2010;138(2 Suppl):18S-24S. doi: 10.1378/chest.10-0088.
- 20. Chapman DG, Irvin CG. Mechanisms of airway hyper-responsiveness in asthma: the past, present and yet to come. Clin Exp Allergy. 2015;45(4):706-19. doi: 10.1111/cea.12506.
- 21. Prieto L, Bertó JM, Lopez M, Peris A. Modifications of PC20 and maximal degree of airway narrowing to methacholine after pollen season in pollen sensitive asthmatic patients. Clin Exp Allergy. 1993;23(3):172-8. doi: 10.1111/j.1365-2222.1993.tb00878.x.
- 22. Suh DI, Koh YY. Relationship between atopy and bronchial hyperresponsiveness. Allergy Asthma Immunol Res. 2013;5(4):181-8. doi: 10.4168/aair.2013.5.4.181.
- 23. Boulet LP, Turcotte H, Plante S, Chakir J. Airway function, inflammation and regulatory T cell function in subjects in asthma remission. Can Respir J. 2012;19:19-25. doi: 10.1155/2012/347989.
- Cano-Garcinu
 ó
 A, Carvajal-Urue
 ó
 I, D
 í
 az-V
 á
 zquez
 CA, Dom
 í
 mguez-Aurrecoechea B, Garc
 í
 and dereino A, de Rodas PM, Mora-Gandarillas I. Clinical correlates and determinants of airway inflammation in pediatric asthma. J Investig Allergol Clin Immunol. 2010;20(4):303-10.
- 25. Louis G, Schleich F, Guillaume M, Kirkove D, Nekoee Zahrei H, Donneau AF, et al. Development and validation of a predictive model combining patient-reported outcome measures, spirometry and exhaled nitric oxide fraction for asthma diagnosis. ERJ Open Res. 2023;9(1):00451-2022. doi: 10.1183/23120541.00451-2022.
- Olivieri M, Marchetti P, Murgia N, Nicolis M, Torroni L, Spiteri G, et al. Natural pollen exposure increases in a dose-dependent way Fraction of exhaled Nitric Oxide (FeNO) levels in patients sensitized to one or more pollen species. Clin Transl Allergy. 2022;12(2):e12096. doi: 10.1002/clt2.12096.
- Elementi di indirizzo per la prevenzione e la gestione integrata dell'asma grave. Available at: https://www.salute.gov.it/imgs/C_17_ pubblicazioni_3496_allegato.pdf.
- 28. Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al. American Thoracic Society Committee on Interpretation of Exhaled Nitric Oxide Levels (FENO) for Clinical Applications. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications.

- Am J Respir Crit Care Med. 2011;184(5):602-15. doi: 10.1164/rccm.9120-11ST.
- 29. Haccuria A, Michils A, Michiels S, Van Muylem A. Exhaled nitric oxide: a biomarker integrating both lung function and airway inflammation and airway inflammation changes. J Allergy Clin Immunol. 2014;134(3):554-9. doi: 10.1016/j.jaci.2013.12.1070.
- Bao W, Zhang X, Yin J, Han L, Huang Z, Bao L, et al. Small-Airway Function Variables in Spirometry, Fractional Exhaled Nitric Oxide, and Circulating Eosinophils Predicted Airway Hyperresponsiveness in Patients with Mild Asthma. J Asthma Allergy. 2021;14:415-26. doi: 10.2147/JAA.S295345.
- 31. Koca Kalkan I, Koycu Buhari G, Ates H, Başa Akdoğan B, Özdedeoğlu Ö, Aksu K, et al. Can fractional exhaled Nitric Oxide with blood eosinophil count have a place in the diagnostic algorithm for Asthma? Asthma Allergy Immunol. 2021;19(2):100-9. doi: 10.21911/aai.643.
- 32. Livnat G, Yoseph RB, Nir V, Hakim F, Yigla M, Bentur L. Evaluation of high-sensitivity serum CRP levels compared to markers of airway inflammation and allergy as predictors of methacholine bronchial hyper-responsiveness in children. Lung. 2015;193(1):39-45. doi: 10.1007/s00408-014-9658-6.
- 33. 2020 Focused Updates to the Asthma Management Guidelines: A Report from the National Asthma Education and Prevention Program (NAEPP) Coordinating Committee Expert Panel Working Group. Available at: https://www.nhlbi.nih.gov/resources/2020-focused-updates-asthma-management-guidelines.
- 34. Reddel HK, Taylor DR, Bateman ED, Boulet LP, Boushey HA, Busse WW, et al. An official American Thoracic Society/European Respiratory Society statement: asthma control and exacerbations: standardizing endpoints for clinical asthma trials and clinical practice. Am J Respir Crit Care Med. 2009;180(1):59-99. doi: 10.1164/ rccm.200801-060ST.
- Sekiya K, Nakatani E, Fukutomi Y, Kaneda H, Iikura M, Yoshida M, et al. Severe or life-threatening asthma exacerbation: patient heterogeneity identified by cluster analysis. Clin Exp Allergy. 2016;46(8):1043-55. doi: 10.1111/cea.12738.
- 36. Vianello A, Caminati M, Crivellaro M, El Mazloum R, Snenghi R, Schiappoli M, et al. Fatal asthma; is it still an epidemic? World Allergy Organ J. 2016;9(1):42. doi: 10.1186/s40413-016-0129-9.
- 37. D'Amato G, Vitale C, Lanza M, Sanduzzi A, Molino A, Mormile M, et al. Near fatal asthma: treatment and prevention. Eur Ann Allergy Clin Immunol. 2016;48(4):116-22.
- Silver JD, Sutherland MF, Johnston FH, Lampugnani ER, McCarthy MA, Jacobs SJ, et al. Seasonal asthma in Melbourne, Australia, and some observations on the occurrence of thunderstorm asthma and its predictability. PLoS One. 2018;13(4):e0194929. doi: 10.1371/journal.pone.0194929.
- 39. Cockcroft DW, Murdock KY, Kirby J, Hargreave F. Prediction of airway responsiveness to allergen from skin sensitivity to allergen and airway responsiveness to histamine. Am Rev Respir Dis. 1987;135(1):264-7. doi: 10.1164/arrd.1987.135.1.264.
- Schatz M, Rosenwasser L. The allergic asthma phenotype. J Allergy Clin Immunol Pract. 2014;2(6):645-8. doi: 10.1016/j.jaip.2014.09.004.
- 41. Wang L, Zhou L, Zheng P, Mao Z, Liu H. Mild asthma is not mild: risk factors and predictive biomarkers for severe acute exacerbations and progression in mild asthma. Expert Rev Respir Med. 2023;17(12):1261-71. doi: 10.1080/17476348.2024.2314535.
- 42. Ban GY, Kim SC, Lee HY, Ye YM, Shin YS, Park HS, Risk factors predicting severe asthma exacerbations in adult asthmatics: a real-world

- clinical evidence. Allergy Asthma Immunol Res. 2021;13(3):420-34. doi: 10.4168/aair.2021.13.3.420.
- 43. Kang HR, Song HJ, Nam JH, Hong SH, Yang SY, Ju S, et al. Risk factors of asthma exacerbation based on asthma severity: a nation-wide population-based observational study in South Korea. BMJ Open. 2018;8(3):e020825. doi: 10.1136/bmjopen-2017-020825.
- 44. Meslier N, Charbonneau G, Racineux JL. Wheezes. Eur Respir J. 1995;8(11):1942-8. doi: 10.1183/09031936.95.08111942.
- 45. Dales RE, Ernst P, Hanley JA, Battista RN, Becklake MR. Prediction of airway reactivity from responses to a standardized respiratory symptom questionnaire. Am Rev Respir Dis. 1987;135(4):817-21. doi: 10.1164/arrd.1987.135.4.817.
- Tomita K, Sano H, Chiba Y, et al. A scoring algorithm for predicting the presence of adult asthma: a prospective derivation study. Prim Care Respir J. 2013;22(1):51-8. doi:10.4104/pcrj.2013.00005.
- 47. Burney PG, Chinn S, Britton JR, Tattersfield AE, Papacosta AO. What symptoms predict the bronchial response to histamine? Evaluation in a community survey of the bronchial symptom questionnaire (1984) of the International Union Against Tuberculosis and Lung Disease. Int J Epidemiol. 1989;18(1):165-73. doi: 10.1093/ije/18.1.165.
- 48. Mortagy AK, Howell JB, Waters WE. Respiratory symptoms and bronchial reactivity: identification of a syndrome and its relation to asthma. Br Med J (Clin Res Ed). 1986;293(6546):525-9. doi: 10.1136/bmj.293.6546.525.
- 49. Barnes PJ, Szefler SJ, Reddel HK, Chipps BE. Symptoms and perception of airway obstruction in asthmatic patients: Clinical implications for use of reliever medications. J Allergy Clin Immunol. 2019;144(5):1180-6. doi: 10.1016/j.jaci.2019.06.040.
- Fuhlbrigge A, Marvel J, Electricwala B, Siddall J, Scott M, Middleton-Dalby C, et al. Physician-Patient Concordance in the Assessment of Asthma Control. J Allergy Clin Immunol Pract. 2021;9(8):3080-8. el. doi: 10.1016/j.jaip.2021.03.056.
- 51. Murugesan N, Saxena D, Dileep A, Adrish M, Hanania NA. Update on the Role of FeNO in Asthma Management. Diagnostics (Basel). 2023;13(8):1428. doi: 10.3390/diagnostics13081428.
- 52. Pesantes E, Hernando R, Lores C, Cámara J, Arévalo E, Lores L. Utility of exhaled nitric oxide to guide mild asthma treatment in atopic patients and its correlation with asthma control test score: a randomized controlled trial. BMC Pulm Med. 2024;24(1):421. doi: 10.1186/s12890-024-03227-y.
- 53. Price DB, Rigazio A, Campbell JD, Bleecker ER, Corrigan CJ, Thomas M, et al. Blood eosinophil count and prospective annual asthma disease burden: a UK cohort study. Lancet Respir Med. 2015;3(11):849-58. doi: 10.1016/S2213-2600(15)00367-7.
- 54. Vedel-Krogh S, Fallgaard Nielsen S, Lange P, Vestbo J, Nordest-gaard BG. Association of Blood Eosinophil and Blood Neutrophil Counts with Asthma Exacerbations in the Copenhagen General Population Study. Clin Chem. 2017;63(4):823-32. doi: 10.1373/clinchem.2016.267450.
- 55. Kole TM, Vanden Berghe E, Kraft M, Vonk JM, Nawijn MC, Siddiqui S, et al. Predictors and associations of the persistent airflow limitation phenotype in asthma: a post-hoc analysis of the ATLAN-TIS study. Lancet Respir Med. 2023;11(1):55-64. doi: 10.1016/S2213-2600(22)00185-0.
- 56. Giovannelli J, Chérot-Kornobis N, Hulo S, Ciuchete A, Clément G, Amouyel P, et al. Both exhaled nitric oxide and blood eosinophil count were associated with mild allergic asthma only in non-smokers. Clin Exp Allergy. 2016;46(4):543-54. doi: 10.1111/cea.12669.

- 57. Couillard S, Laugerud A, Jabeen M, Ramakrishnan S, Melhorn J, Hinks T, Pavord I. Derivation of a prototype asthma attack risk scale centred on blood eosinophils and exhaled nitric oxide. Thorax. 2022;77(2):199-202. doi: 10.1136/thoraxjnl-2021-217325.
- Nathan RA, Kinsman RA, Spector SL, Horton DJ. Relationship between airways response to allergens and nonspecific bronchial reactivity. J Allergy Clin Immunol. 1979;64(6 Pt 1):491-9. doi: 10.1016/0091-6749(79)90058-7.
- Muller BA, Leick CA, Smith RM, Suelzer MT, Richerson HB. Comparisons of specific and nonspecific bronchoprovocation in subjects with asthma, rhinitis, and healthy subjects. J Allergy Clin Immunol. 1993;91(3):758-72. doi: 10.1016/0091-6749(93)90196-m.
- Diamant Z, Gauvreau GM, Cockcroft DW, Boulet LP, Sterk PJ, de Jongh FH, et al. Inhaled allergen bronchoprovocation tests. J Allergy Clin Immunol. 2013;132(5):1045-55.e6. doi: 10.1016/j. iaci.2013.08.023.
- 61. Benckhuijsen J, van den Bos JW, van Velzen E, de Bruijn R, Aalbers R. Differences in the effect of allergen avoidance on bronchial hyperresponsiveness as measured by methacholine, adenosine 5'-monophosphate, and exercise in asthmatic children. Pediatr Pulmonol. 1996;22(3):147-53. doi: 10.1002/(SICI)1099.
- 62. Boulet LP, Cartier A, Thomson NC, Roberts RS, Dolovich J, Hargreave FE. Asthma and increases in nonallergic bronchial responsiveness from seasonal pollen exposure. J Allergy Clin Immunol. 1983;71(4):399-406. doi: 10.1016/0091-6749(83)90069-6.
- 63. Cockcroft DW, Ruffin RE, Dolovich J, Hargreave FE. Allergen-induced increase in non-allergic bronchial reactivity. Clin Allergy. 1977;7(6):503-13. doi: 10.1111/j.1365-2222.1977.tb01481.x.
- Cockcroft DW, Hargreave FE, O'Byrne PM, Boulet LP. Understanding allergic asthma from allergen inhalation tests. Can Respir J. 2007;14(7):414-8. doi: 10.1155/2007/753450.
- 65. Lam S, Tan F, Chan H, Chan-Yeung M. Relationship between types of asthmatic reaction, nonspecific bronchial reactivity, and specific IgE antibodies in patients with red cedar asthma. J Allergy Clin Immunol. 1983;72(2):134-9. doi: 10.1016/0091-6749(83)90520-1.
- 66. Leuppi JD, Salome CM, Jenkins CR, Anderson SD, Xuan W, Marks GB, et al. Predictive markers of asthma exacerbation during stepwise dose reduction of inhaled corticosteroids. Am J Respir Crit Care Med. 2001;163(2):406-12. doi: 10.1164/ajrccm.163.2.9912091.
- 67. Brannan JD. Bronchial hyperresponsiveness in the assessment of asthma control: Airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest. 2010;138(2 Suppl):11S-17S. doi: 10.1378/chest.10-0231.
- 68. Sverrild A, Leadbetter J, Porsbjerg C. The use of the mannitol test as an outcome measure in asthma intervention studies: a review and practical recommendations. Respir Res. 2021;22(1):287. doi: 10.1186/s12931-021-01876-9.
- Gibbons WJ, Sharma A, Lougheed D, Macklem PT. Detection of excessive bronchoconstriction in asthma. Am J Respir Crit Care Med. 1996;153(2):582-9. doi: 10.1164/ajrccm.153.2.8564102.
- Lee P, Abisheganaden J, Chee CB, Wang YT. A new asthma severity index: a predictor of near-fatal asthma? Eur Respir J. 2001;18(2):272-8. doi: 10.1183/09031936.01.00074401.
- 71. Bateman ED, Boushey HA, Bousquet J, Busse WW, Clark TJ, Pauwels RA, et al. Can guideline-defined asthma control be achieved? The Gaining Optimal Asthma Control study. Am J Respir Crit Care Med. 2004;170(8):836-44. doi: 10.1164/rccm.200401-033OC.
- 72. Murphy J, McSharry J, Hynes L, Matthews S, Van Rhoon L, Molloy GJ. Prevalence and predictors of adherence to inhaled corti-

- costeroids in young adults (15-30 years) with asthma: a systematic review and meta-analysis. J Asthma. 2021;58(5):683-705. doi: 10.1080/02770903.2020.1711916.
- 73. Lee LK, Obi E, Paknis B, Kavati A, Chipps B. Asthma control and disease burden in patients with asthma and allergic comorbidities. J Asthma. 2018;55(2):208-19. doi: 10.1080/02770903.2017.1316394.
- 74. Blais L, Kettani FZ, Forget A, Beauchesne MF, Lemière C, Ducharme FM. Assessing adherence to inhaled corticosteroids in asthma patients using an integrated measure based on primary and secondary adherence. Eur J Clin Pharmacol. 2017;73(1):91-97. doi: 10.1007/s00228-016-2139-5
- 75. Serhal S, Saini B, Bosnic-Anticevich S, Krass I, Wilson F, Armour C. Medication Adherence in a Community Population with Uncontrolled Asthma. Pharmacy (Basel). 2020;8(4):183. doi: 10.3390/pharmacy8040183.
- Sanchis J, Gich I, Pedersen S; Aerosol Drug Management Improvement Team (ADMIT). Systematic Review of Errors in Inhaler Use: Has Patient Technique Improved Over Time? Chest. 2016;150(2):394-406. doi: 10.1016/j.chest.2016.03.041.
- 77. Chrystyn H, van der Palen J, Sharma R, Barnes N, Delafont B, Mahajan A, et al. Device errors in asthma and COPD: systematic literature review and meta-analysis. NPJ Prim Care Respir Med. 2017;27(1):22. doi: 10.1038/s41533-017-0016-z.
- 78. World Health Organization (WHO). Adherence to long-term therapies: evidence for action; 2003. [2018 October 3].
- Kvarnström K, Westerholm A, Airaksinen M, Liira H. Factors Contributing to Medication Adherence in Patients with a Chronic Condition: A Scoping Review of Qualitative Research. Pharmaceutics. 2021;13(7):1100. doi: 10.3390/pharmaceutics13071100.
- Price D, Robertson A, Bullen K, Rand C, Horne R, Staudinger H. Improved adherence with once-daily versus twice-daily dosing of mometasone furoate administered via a dry powder inhaler: a randomized open-label study. BMC Pulm Med. 2010;10:1. doi: 10.1186/1471-2466-10-1.
- 81. Ulrik CS, Backer V, Søes-Petersen U, Lange P, Harving H, Plaschke PP. The patient's perspective: adherence or non-adherence to asthma controller therapy? J Asthma. 2006;43(9):701-4. doi: 10.1080/02770900600925569.
- 82. Peláez S, Lamontagne AJ, Collin J, Gauthier A, Grad RM, Blais L, et al. Patients 'perspective of barriers and facilitators to talking long term controller medication for asthma: a novel taxonomy. BMC Pulm Med. 2015;15:42. doi: 10.1186/s12890-015-0044-9.
- 83. Magnoni MS, Latorre M, Bettoncelli G, Sanchez-Herrero MG, Lopez A, Calvo E, et al. Asthma control in primary care: the results of an observational cross-sectional study in Italy and Spain. World Allergy Organ J. 2017;10(1):13. doi: 10.1186/s40413-017-0144-5.
- 84. Bidad N, Barnes N, Griffiths C, Horne R. Understanding patients' perceptions of asthma control: a qualitative study. Eur Respir J. 2018;51(6):1701346. doi: 10.1183/13993003.01346-2017.
- 85. Vogelberg C, Brüggenjürgen B, Richter H, Jutel M. Real-World Adherence and Evidence of Subcutaneous and Sublingual Immunotherapy in Grass and Tree Pollen-Induced Allergic Rhinitis and Asthma. Patient Prefer Adherence. 2020;14:817-27. doi: 10.2147/PPA.S242957.
- 86. Musa F, Al-Ahmad M, Arifhodzic N, Al-Herz W. Compliance with allergen immunotherapy and factors affecting compliance among patients with respiratory allergies. Hum Vaccin Immunother. 2017;13(3):514-7. doi: 10.1080/21645515.2016.1243632.
- 87. Idrose NS, Lodge CJ, Erbas B, Douglass JA, Bui DS, Dharmage SC. A Review of the Respiratory Health Burden Attributable to

- Short-Term Exposure to Pollen. Int J Environ Res Public Health. 2022;19(12):7541. doi: 10.3390/ijerph19127541.
- 88. Comberiati P, Di Cicco ME, D'Elios S, Peroni DG. How Much Asthma Is Atopic in Children? Front Pediatr. 2017;5:122. doi: 10.3389/fped.2017.00122.
- 89. De Roos ÅJ, Kenyon CC, Zhao Y, Moore K, Melly S, Hubbard RA, et al. Ambient daily pollen levels in association with asthma exacerbation among children in Philadelphia, Pennsylvania. Environ Int. 2020;145:106138. doi: 10.1016/j.envint.2020.106138.
- 90. Shrestha SK, Katelaris C, Dharmage SC, Burton P, Vicendese D, Tham R, et al. High ambient levels of grass, weed and other pollen are associated with asthma admissions in children and adolescents: A large 5-year case-crossover study. Clin Exp Allergy. 2018;48(11):1421-8. doi: 10.1111/cea.13225.
- 91. Shrestha SK, Lambert KA, Erbas B. Ambient pollen concentrations and asthma hospitalization in children and adolescents: a systematic review and meta-analysis. J Asthma. 2021;58(9):1155-68. doi: 10.1080/02770903.2020.1771726.
- 92. Batra M, Dharmage SC, Newbigin E, Tang M, Abramson MJ, Erbas B, et al. Grass pollen exposure is associated with higher readmission rates for pediatric asthma. Pediatr Allergy Immunol. 2022;33(11):e13880. doi: 10.1111/pai.13880.
- 93. Lappe BL, Ebelt S, D'Souza RR, Manangan A, Brown C, Saha S, et al. Pollen and asthma morbidity in Atlanta: A 26-year time-series study. Environ Int. 2023;177: doi: 10.1016/j.envint.2023.107998.
- 94. Erbas B, Jazayeri M, Lambert KA, Katelaris CH, Prendergast LA, Tham R, et al. Outdoor pollen is a trigger of child and adolescent asthma emergency department presentations: a systematic review and meta-analysis. Allergy. 2018;73(8):1632-41. doi: 10.1111/all.13407.
- 95. Carlsen HK, Haga SL, Olsson D, Behndig AF, Modig L, Meister K, et al. Birch pollen, air pollution and their interactive effects on airway symptoms and peak expiratory flow in allergic asthma during pollen season a panel study in Northern and Southern Sweden. Environ Health. 2022;21(1):63. doi: 10.1186/s12940-022-00871-x.
- 96. Dominguez-Ortega J, Navarro A, Delgado Romero J, Dordal T, Habernau A, Rodríguez M, et al. Pollen-Induced Allergic Asthma and Rhinoconjunctivitis: Differences in Outcome Between Seasonal and Nonseasonal Exposure to Allergens Under Real-Life Conditions (The LANDSCAPE Study). J Investig Allergol Clin Immunol. 2020;30(6):454-6. doi: 10.18176/jiaci.0544.
- 97. D'Amato G, Vitale C, D'Amato M, Cecchi L, Liccardi G, Molino A, et al. Thunderstorm-related asthma: what happens and why. Clin Exp Allergy. 2016;46(3):390-6. doi: 10.1111/cea.12709.
- Lee J, Kronborg C, O'Hehir RE, Hew M. Who's at risk of thunderstorm asthma? The ryegrass pollen trifecta and lessons learnt from the Melbourne thunderstorm epidemic. Respir Med. 2017;132:146-8. doi: 10.1016/j.rmed.2017.10.012.
- 99. Nickovic S, Petković S, Ilić L, Pejanović G, Mijić Z, Huete A, et al. Prediction of airborne pollen and sub-pollen particles for thunderstorm asthma outbreaks assessment. Sci Total Environ. 2023;864:160879. doi: 10.1016/j.scitotenv.2022.160879.
- 100. GEMA 5.0 Spanish Guideline on the Management of Asthma. Available at: ht4ps://www.gemasma.com/.
- Agency for Care Effectiveness. Available at: https://www.ace-hta. gov.sg/docs/default-source/acgs/asthma-management-(nov-2020). pdf. Last access date: 07/08/2024.
- 102. Niimi A, Fukunaga K, Taniguchi M, Nakamura Y, Tagya E, Horiguchi T, et al. Executive summary: Japanese guidelines for adult asthma (JGL) 2021. Allergol Int. 2023;72(2):207-26. doi: 10.1016/j. alit.2023.02.006.

- 103. Yang CL, Hicks E, Mitchell P, Reisman J, Podgers D, Hayward KM, et al. Canadian Thoracic Society 2021. Guideline update: Diagnosis and management of asthma in preschoolers, children and adults. Can J Respir Crit Care Sleep Med. 2021;5(6):348-61. doi: 10.1080/24745332.2021.194588719.
- 104. Kim DK, Park YB, Oh YM, Jung KS, Yoo JH, Yoo KH, et al. Steering and Scientific Committee of Asthma Study Group and Guideline Control Committee in The Korean Academy of Tuberculosis and Respiratory Diseases (KATRD). Korean Asthma Guideline 2014: Summary of Major Updates to the Korean Asthma Guideline 2014. Tuberc Respir Dis (Seoul). 2016;79(3):111-20. doi: 10.4046/trd.2016.79.3.111.
- 105. Reddel HK, Busse WW, Pedersen S, Tan WC, Chen YZ, Jorup C, et al. Should recommendations about starting inhaled corticosteroid treatment for mild asthma be based on symptom frequency: a post-hoc efficacy analysis of the START study. Lancet. 2017;389(10065):157-66. doi: 10.1016/S0140-6736(16)31399-X.
- 106. Dusser D, Montani D, Chanez P, de Blic J, Delacourt C, Deschildre A, et al. Mild asthma: an expert review on epidemiology, clinical characteristics and treatment recommendations. Allergy. 2007;62(6):591-604. doi: 10.1111/j.1398-9995.2007.01394.x.
- 107. Bonsignore MR, Profita M, Gagliardo R, Riccobono L, Chiappara G, Pace E, et al. Advances in asthma pathophysiology: stepping forward from the Maurizio Vignola experience. Eur Respir Rev. 2015;24(135):30-9. doi: 10.1183/09059180.10011114.
- 108. Profita M, La Grutta S, Carpagnano E, Riccobono L, Di Giorgi R, Bonanno A, et al. Noninvasive methods for the detection of upper and lower airway inflammation in atopic children. J Allergy Clin Immunol. 2006;118(5):1068-74. doi: 10.1016/j.jaci.2006.07.028.
- 109. Tan DJ, Lodge CJ, Walters E, Lowe AJ, Bui DS, Bowatte G, et al. Biomarkers of asthma relapse and lung function decline in adults with spontaneous asthma remission: a population-based cohort study. Allergy. 2023;78(4):957-967. doi: 10.1111/all.15566.
- O'Sullivan MJ, Lan B. The Aftermath of Bronchoconstriction. J Eng Sci Med Diagn Ther. 2019;2(1):108031-6. doi: 10.1115/1.4042318.
- Hill MR, Philp CJ, Billington CK, Tatler AL, Johnson SR, O'Dea RD, Brook BS. A theoretical model of inflammation- and mechanotransduction-driven asthmatic airway remodelling. Biomech Model Mechanobiol. 2018;17(5):1451-70. doi: 10.1007/s10237-018-1037-4.
- 112. Winkler T. Mechanisms of airway remodeling converge at the critical point of bronchoconstriction in asthma. Ann Transl Med. 2022;10(22):1188. doi: 10.21037/atm-22-5095.
- Grainge CL, Lau LC, Ward JA, Dulay V, Lahiff G, Wilson S, et al. Effect of Bronchoconstriction on Airway Remodeling in Asthma. N Engl J Med. 2011;364(21):2006-15. doi: 10.1056/NEJMoa1014350.
- 114. Bagley DC, Russell T, Ortiz-Zapater E, Stinson S, Fox K, Redd PF, et al. Bronchoconstriction damages airway epithelia by crowding-induced excess cell extrusion. Science. 2024;384(6691):66. doi: 10.1126/science.adk2758.
- 115. Latorre M, Pistelli R, Carpagnano GE, Celi A, Puxeddu I, Scichilone N, et al. Symptom *versus* exacerbation control: an evolution in GINA guidelines? Ther Adv Respir Dis. 2023;17:17534666231159261. doi: 10.1177/17534666231159261.
- Loymans RJ, Gemperli A, Cohen J, Rubinstein SM, Sterk PJ, Reddel HK, et al. Comparative effectiveness of long-term drug treatment strategies to prevent asthma exacerbations: network meta-analysis. BMJ. 2014;348:g3009. doi: 10.1136/bmj.g3009.
- 117. Chapman KR, Barnes NC, Greening AP, Jones PW, Pedersen S. Single maintenance and reliever therapy (SMART) of asthma: a critical appraisal. Thorax. 2010;65(8):747-52. doi: 10.1136/thx.2009.128504.

- 118. Rabe KF, Atienza T, Magyar P, Larsson P, Jorup C, Lalloo UG. Effect of budesonide in combination with formoterol for reliever therapy in asthma exacerbations: a randomised controlled, double-blind study. Lancet. 2006;368:744-53. doi: 10.1016/S0140-6736(06)69284-2.
- Papi A, Corradi M, Pigeon-Francisco C, et al. Beclometasone-formoterol as maintenance and reliever treatment in patients with asthma: a double-blind, randomised controlled trial. Lancet Respir Med 2013;1: 23–31.
- 120. Pavord ID, Jeffery PK, Qiu Y, Zhu J, Parker D, Carlsheimer A, et al. Airway inflammation in patients with asthma with high-fixed or low-fixed plus as-needed budesonide/formoterol. J Allergy Clin Immunol. 2009;123(5):1083-9, 1089.el-7. doi: 10.1016/j.jaci.2009.02.034.
- 121. Chapman KR, An L, Bosnic-Anticevich S, Campomanes CM, Espinosa J, Jain P, et al. Asthma patients' and physicians' perspectives on the burden and management of asthma, Respir Med. 2021;186:106524. doi: 10.1016/j.rmed.2021.106524.
- 122. Chapman KR, Canonica GW, Lavoie KL, Nenasheva N, Garcia G, Bosnic-Anticevich S, et al. Patients' and physicians' perspectives on the burden and management of asthma: Results from the APPaRENT 2 study. Respir Med. 2022;201:106948. doi: 10.1016/j. rmed.2022.106948.
- 123. Aggarwal B, Al-Moamary M, Allehebi R, Alzaabi A, Al-Ahmad M, Amin M et al. APPaRENT 3: Asthma Patients' and Physicians' Perspectives on the Burden and Management of Asthma in Seven Countries. Adv Ther. 2024;41(8):3089-118. doi: 10.1007/s12325-024-02900-2.
- 124. Daley-Yates P, Brealey N, Thomas S, Austin D, Shabbir S, Harrison T, et al. Therapeutic index of inhaled corticosteroids in asthma: A dose-response comparison on airway hyperresponsiveness and adrenal axis suppression. Br J Clin Pharmacol. 2021;87(2):483-93. doi: 10.1111/bcp.14406.
- 125. Lin SY, Erekosima N, Kim JM, Ramanathan M, Suarez-Cuervo C, Chelladurai Y, et al. Sublingual immunotherapy for the treatment of allergic rhinoconjunctivitis and asthma: a systematic review. JAMA. 2013;309(12):1278-88. doi: 10.1001/jama.2013.2049.
- 126. Calderon MA, Casale TB, Nelson HS, Demoly P. An evidence-based analysis of house dust mite allergen immunotherapy: a call for more rigorous clinical studies. J Allergy Clin Immunol. 2013;132(6):1322-36. doi: 10.1016/j.jaci.2013.09.004.
- 127. Fritzsching B, Contoli M, Porsbjerg C, Buchs S, Larsen JR, Elliott L, et al. Long-term real-world effectiveness of allergy immunotherapy in patients with allergic rhinitis and asthma: Results from the REACT study, a retrospective cohort study. Lancet Reg Health Eur. 2021;13:100275. doi: 10.1016/j.lanepe.2021.100275.
- 128. Woehlk C, Von Bülow A, Ghanizada M, Søndergaard MB, Hansen S, Porsbjerg C. Allergen immunotherapy effectively reduces the risk of exacerbations and lower respiratory tract infections in both seasonal and perennial allergic asthma: a nationwide epidemiological study. Eur Respir J. 2022;60(5):2200446. doi: 10.1183/13993003.00446-2022.
- 129. Demoly P, Molimard M, Bergman JF, Delaisi B, Gouverneur A, Vadel J, et al. Impact of liquid sublingual immunotherapy on asthma onset and progression in patients with allergic rhinitis: a nationwide population-based study (EfficAPSI study). The Lancet Regional Health Europe. 2024;41:100915. doi: 10.1016/j. lanepe.2024.100915.
- 130. Pfaar O, Ankermann T, Augustin M, Bubel P, Böing S, Brehler R, et al. Guideline on allergen immunotherapy in IgE-mediated allergic diseases: S2K Guideline of the German Society of Allergology

- and Clinical Immunology (DGAKI), Society of Pediatric Allergology and Environmental Medicine (GPA), Medical Association of German Allergologists (AeDA), Austrian Society of Allergology and Immunology (ÖGAI), Swiss Society for Allergology and Immunology (SSAI), German Dermatological Society (DDG), German Society of OtoRhinoLaryngology, Head and Neck Surgery (DGH-NO-KHC), German Society of Pediatrics and Adolescent Medicine (DGKJ), Society of Pediatric Pulmonology (GPP), German Respiratory Society (DGP), German Professional Association of Oto-laryngologists (BVHNO), German Association of Paediatric and Adolescent Care Specialists (BVKJ), Federal Association of Pneumologists, Sleep and Respiratory Physicians (BdP), Professional Association of German Dermatologists (BVDD). Allergol Select. 2022;6:167-232. doi: 10.5414/ALX02331E.
- 131. Montori VM, Ruissen MM, Hargraves IG, Brito JP, Kunneman M. Shared decision-making as a method of care. BMJ Evid Based Med. 2023;28(4):213-7. doi: 10.1136/bmjebm-2022-112068.

- Saini SD, Schoenfeld P, Kaulback K, Dubinsky MC. Effect of medication dosing frequency on adherence in chronic diseases. Am J Manag Care. 2009;15(6):e22-33.
- 133. Vaghi A, Incalzi RA, Barbaglia S, Bilò MB, Bini F, Carone M, et al. Expert opinion on gray areas in asthma management: A lesson from the innovative project "revolution in asthma" of the Italian thoracic society (AIPO-ITS). Clin Transl Allergy. 2025;15(2):e70037. doi: 10.1002/clt2.70037.
- 134. Expert Panel Working Group of the National Heart, Lung, and Blood Institute (NHLBI) administered and coordinated National Asthma Education and Prevention Program Coordinating Committee (NAEPPCC); Cloutier MM, Baptist AP, Blake KV, Brooks EG, Bryant-Stephens T, et al. 2020 Focused Updates to the Asthma Management Guidelines: A Report from the National Asthma Education and Prevention Program Coordinating Committee Expert Panel Working Group. J Allergy Clin Immunol. 2020;146(6):1217-70. doi: 10.1016/j.jaci.2020.10.003.

Eur Ann Allergy Clin Immunol

Sefika Ilknur Kokcu Karadag¹, Serenay Özen Cökelez², Esra Bekar Cepniler¹ Emin Abdullayev¹, Özlem Terzi³, Deniz Özceker⁴, Recep Sancak¹, Alisan Yıldıran¹

The role of basophil activation test in venom immunotherapy: comparative evaluation with specific IgE and skin prick tests, innovative approaches

- ¹Department of Pediatric Allergy and Immunology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
- ²Department of Pediatrics, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
- ³Department of Public Health, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
- ⁴Department of Pediatric Allergy and Immunology, Prof. Dr. Cemil Taşçıoğlu City Hospital, Istanbul, Turkey

Key words

Venom Immunotherapy; basophil activation test; specific IgE test; skin prick test.

Corresponding author

Sefika Ilknur Kokcu Karadag Division of Pediatric Allergy and Immunology Department of Pediatrics Faculty of Medicine Ondokuz Mayıs University 55139 Kurupelit, Samsun, Turkey ORCID: 0000-0001-9234-633X E-mail: drilknurkokcu@gmail.com

Doi

10.23822/EurAnnACI.1764-1489.353

IMPACT STATEMENT

The basophil activation test (BAT) offers high accuracy in diagnosing insect venom allergy and making immunotherapy decisions, providing significant insights for clinical practices.

Summary

Background. In diagnosing insect venom allergy and making immunotherapy decisions, clinical history, skin tests, and specific serum IgE levels are commonly utilized. This study aims to emphasize the clinical significance of using the basophil activation test in accurately identifying sensitivities in individuals with insect venom allergy and to compare its effectiveness with other testing methods. Methods. This study included a total of 43 patients, who experienced at least one systemic allergic reaction following insect stings and were deemed suitable for immunotherapy. Basophil activation test, specific serum IgE levels, and skin prick test results utilized in making immunotherapy treatment decisions were recorded. Results. Our study determined that the overall clinical sensitivities of the basophil activation test (BAT), specific serum IgE (spIgE), and skin prick test (SPT) for Apis mellifera were 95.5%, 95.7%, and 48.4% respectively, while for Vespula vulgaris, they were 83.3%, 100%, and 33.3%. Based on these results, the prediction of systemic reactions to bee stings is ordered as spIgE > BAT > SPT. Additionally, early-stage skin prick tests showed a sensitivity of 67% and specificity of 50% at a cut-off value of 1.5 mm, and 33% sensitivity and 83% specificity at 2.5 mm. Conclusions. This study demonstrates that the basophil activation test (BAT) can provide a high positive predictive value in immunotherapy treatment decisions and offer significant insights in clinical practices.

Introduction

Hypersensitivity to Hymenoptera stings, affecting a considerable segment of the population (56-94%), poses a potential life-threatening risk (1). Systemic allergic reactions to such stings have been reported in up to 7.5% of adults and 3.4% of children (2). Venom immunotherapy (VIT) remains the sole effective treatment for patients showing severe reactions following Hymenoptera stings, reducing the risk of a serious systemic reaction to a sting by approximately 90% (3, 4).

For the detection of hypersensitivity to Hymenoptera venom, skin tests and the measurement of specific IgE antibodies in serum are the commonly employed methods, proving effective in confirming diagnoses in various cases. Nonetheless, there can be instances of test results not aligned with clinical histories. Precise identification of a patient's sensitivity before initiating VIT is critically important for the success of the treatment. In such scenarios, there arises a need for alternative testing approaches, like cellular *in vitro* tests, that can yield more definitive outcomes. With the limitations of traditional diagnostic methods such as specific IgE and skin prick tests in mind, the significance of the Basophil Activation Test in diagnosing venom allergy is increasingly being acknowledged (5).

Presently, the basophil activation test is utilized in determining clinical sensitivity at the commencement of venom immunotherapy, in patients with conflicting or negative skin test or specific IgE results, for allergen selection in patients with dual sensitivities for VIT, and in the monitoring and evaluation of VIT's efficacy (6, 7). To date, there has been a limited number of studies in literature on this subject and none from our country.

The main objective of our study is to showcase the applicability and effectiveness of the Basophil Activation Test in detecting hypersensitivity to Hymenoptera venom. In particular, this study provides a comparative evaluation of this test with skin prick tests and allergen-specific serum IgE measurements, in terms of both clinical sensitivity and positive predictive values. The study highlights the necessity for current approaches in the more accurate and effective detection and management of hypersensitivity conditions resulting from Hymenoptera stings.

In this regard, the role of the basophil activation test in the immunotherapy process for bee allergy is thoroughly compared with traditional approaches, such as specific IgE measurement and Skin Prick tests. The study delves into the advantages and limitations of these three distinct testing methods and evaluates the potential contribution of BAT in diagnosing Hymenoptera venom allergy.

Materials and methods

Study population and design

This study included a total of 43 patients who exhibited systemic allergic reactions following *Apis mellifera* and *Vespula vulgaris* were consequently treated with venom immunotherapy (VIT). Demographic data, clinical characteristics, and the severity of reactions of the patients were recorded (**table I**). Anamnesis information included details about the type of stinging bee and reaction characteristics. The severity of the patients' reactions was graded according to the Muller classification (2).

Skin prick test

Standardized purified venom antigens of *Apis mellifera* and *Vespula vulgaris* (ALK-Abello, Horsholm, Denmark) were used for skin tests. Application was performed at the recommended standard dosage of 100 µg/mL concentration. Patients underwent skin

Table I - Demographic information of patients.

	n	Percentage %		
Gender				
Male	34	79.1		
Female	9	20.9		
Age				
Below 10 years old	6	14.0		
Between 10-20 years old	24	55.8		
Above 20 years old	13	30.2		
Time to Initiate VIT after Bee Stir	ng			
Below 1 month	4	9.3		
Between 1-2 months	18	41.9		
Between 2-6 months	5	11.6		
Between 6 months to 1 year	12	27.9		
Above 1 year	4	9.3		
Age of Starting VIT				
Below 5 years old	3	7.0		
Between 5-10 years old	18	41.9		
Between 10-15 years old	7	16.3		
Above 15 years old	15	34.9		
Incidence of Bee Sting during VI7	Γ			
No	21	48.8		
Yes	22	51.2		
Incidence of Sting by Treated Bee Sp	pecies			
No	1	4.5		
Yes	21	95.5		
Reaction Type				
None	14	63.6		
Local	6	27.3		
Systemic	2	9.1		
Duration of VIT				
1 year	5	11.6		
2 years	4	9.3		
3 years	5	11.6		
4 years	8	18.6		
5 years	18	41.9		
6 years	3	7.0		

prick tests, and intradermal test methods were not employed. Positive test results were defined according to the recommendations of the European Academy of Allergy and Clinical Immunology. Intradermal test results were considered positive if the difference from the negative control was greater than 3 mm (2).

Specific IgE antibody determination

The levels of allergen-specific IgE in serum samples were measured using the ImmunoCAP 1000 system manufactured by Phadia (Sweden). For each serum sample, IgE levels against Honeybee (*Apis mellifera*, II) and Wasp (Vespula Spp, I3) were measured using the ImmunoCAP test kit. A specific test (test code: 6759) for the Bee Venom Components IgE panel was applied. The levels of Allergen-Specific IgE (spIgE) were classified according to a predetermined evaluation scale. Values below 0.10 kU/L were considered negative, while values above 0.10 kU/L were considered positive.

Basophil activation test

BATs were conducted using Flow CAST (Bühlmann Laboratories AG). Venous blood was collected in 10 mL EDTA tubes and stored at 4 °C for no longer than 24 hours. For each patient and allergen, polystyrene tubes were prepared with different concentrations of allergens (bee and wasp venom) and diluted in stimulation buffer. The Flow CAST method was employed for Apis mellifera (BAG2-I1) and Vespula spp (BAG2-I3). The cutoff point for CD63 activation was determined as 11.5 ng/mL or higher concentrations at \geq 10%. Positive controls included monoclonal anti-FceRI antibody and N-formyl-methionyl-leucine-phenylalanine (2 mM), and the negative control used only the stimulation buffer. Cells were analyzed by flow cytometry using a FACSCalibur flow cytometer (Becton-Dickinson Biosciences GmbH, Heidelberg, Germany). Basophilic cells were selected from the lymphocyte population using anti-CCR3 and the upregulation of the activation marker CD63 was calculated as the percentage of CD63 cells in the total basophilic cell population. The cut-off point was set at 10% CD63cells, as recommended by the supplier.

Statistical evaluation

After encoding the data obtained from the research, it was transferred to the computer and analyzed using the SPSS (Statistical Package for Social Sciences) software package (Version 22 for Windows, SPSS Inc, Chicago, IL, USA). Frequency (categorical) data were expressed in numbers and percentages (%). The diagnostic decision-making characteristics (sensitivity, specificity, etc.) of SpIgE, BAT, and SPT results in predicting Apis mellifera and Vespula vulgaris stings were assessed through Receiver Operating Characteristic Curve (ROC) analysis. In the evaluation of Area Under the Curve (AUC) values in ROC analysis, a test was considered statistically significant when p < 0.05.

Ethical committee

The ethical approval for this study was obtained from the Clinical Research Ethics Committee of Ondokuz Mayıs University (number: 2021000609-1). Our study was conducted in accordance with the principles of good clinical practice based on the Helsinki Declaration. Ethical approval confirms that research studies are conducted in compliance with ethical standards and human rights, and that the rights of participants are protected.

Results

Of the 43 patients included in the study, 79.1% were male and 20.9% were female. The ages of the patients at the start of venom immunotherapy are presented in **table I**.

Based on anamnesis, 33 (70.2%) cases were attributed to Apis mellifera stings and 14 (29.8%) to Vespula vulgaris. Among the patients who reacted to Apis mellifera stings, 42.4% displayed Grade 3 reactions and 39.4% Grade 4, while for those reacting to Vespula vulgaris stings, 21.4% were Grade 3 and 71.4% Grade 4. Skin Prick Test (SPT) was administered to all 43 patients. Immediately after bee stings, in the first presentation, only 19 skin prick tests were positive (14 Apis mellifera, 5 Vespula vulgaris). Therefore, those who tested negative among the patients who applied within the first 8 weeks were retested. Sensitivity and specificity were evaluated according to these results. Positive reactions to Apis mellifera were observed in 31 patients, while the remaining 12 showed positive reactions to Vespula vulgaris. Dual sensitivity was observed in 17 patients. The sensitivity of SPT in predicting Apis mellifera stings was 48.4% with a positive predictive value (PPV) of 65.2%. For Vespula vulgaris stings, the sensitivity was 33.3% with a PPV of 20.0% (table II).

SpIgE assessment was conducted in 31 patients. Among 23 patients who showed systemic reactions to *Apis mellifera* stings, 22 had positive SpIgE results, while all 8 patients with systemic reactions to *Vespula vulgaris* stings had positive results. The sensitivity of SpIgE for systemic reactions caused by *Apis mellifera* and *Vespula vulgaris* stings was determined as 95.7% with a PPV of 100.0% for *Apis mellifera*, and 100.0% with a PPV of 88.9% for *Vespula vulgaris* (table II). In 17 patients, dual sensitivity was detected in the DPT test, while in 7 patients, dual sensitivity was detected in the spIgE test.

BAT assessment was carried out in 28 patients. Of the 22 patients stung by *Apis mellifera*, 21 were confirmed by BAT results, and 5 of 6 patients stung by *Vespula vulgaris*. The sensitivity of BAT in predicting *Apis mellifera* stings was 95.5%, with a PPV and Likelihood Ratio (LR) of 95.5% and 5.72, respectively. For *Vespula vulgaris* stings, the sensitivity of BAT was 83.3%, with a PPV and LR of 83.3% and 18.51, respectively (**table III**). Dual sensitivity was not detected.

In terms of diagnostic efficacy in identifying systemic reactions to *Apis mellifera* and *Vespula vulgaris* stings, the diagnostic supe-

Table II - Diagnostic values of diagnostic tests in predicting stings from the Apis mellifera and Vespula vulgaris.

	Diagnostic test	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)	LR
Apis mellifera	SPT	48.4	33.3	65.2	80.0	0.73
	SpIgE	95.7	100.0	100.0	11.1	NA
	BAT	95.5	83.3	95.5	16.7	5.72
Vespula vulgaris	SPT	33.3	48.3	20.0	34.8	0.64
	SpIgE	100.0	95.7	88.9	NA	23.26
	BAT	83.3	95.5	83.3	4.5	18.51

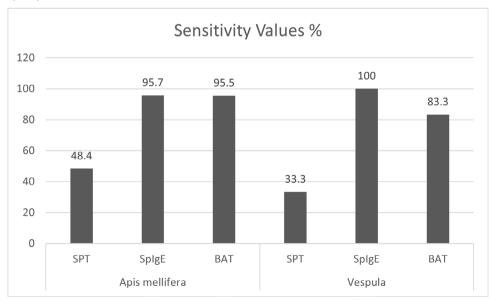
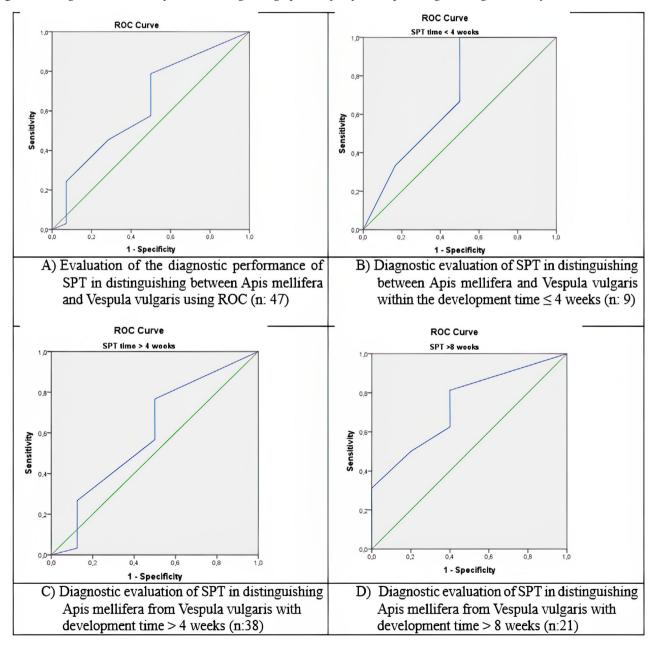

Positive predictive value; negative predictive value; likelihood ratios.

Table III - Comparison of basophil activation test sensitivity results with skin prick test and specific IgE results by bee species.

Variables		Sensitivity r	esults of BAT	D 1 *	P-value**		
		Positive n (%)	Negative n (%)	- P-value*			
Apis mellifera	SPT	Positive	8 (38.1)	0 (0.0)	NA	NA	
		Negative	13 (61.9)	0 (0.0)			
	SpIgE	Positive	16 (94.1)	1 (100.0)	1.00	0.817	
		Negative	1 (5.9)	0 (0.0)			
Vespula vulgaris	SPT	Positive	3 (60.0)	0 (0.0)	NA	NA	
		Negative	2 (40.0)	0 (0.0)			
	SpIgE	Positive	5 (100.0)	0 (0.0)	NA	NA	
		Negative	0 (0.0)	0 (0.0)			

^{*}Fisher's Exact test; **Spearman correlation analysis; NA: no analysis done.

Figure 1 - Sensitivity values for Apis mellifera and Vespula vulgaris: comparing Basophil Activation Test (BAT), Specific Serum IgE (spIgE), and Skin Prick Test (SPT).


riority ranking was established as Specific IgE (SpIgE) > Basophil Activation Test (BAT) > Skin Prick Test (SPT) (**figure 1**).

Determining the optimal cut-off value for SPT through ROC analysis (figure 2)

Patients were categorized based on the time intervals following bee stings for conducting the skin prick test: within the first 4

weeks, between 4 and 8 weeks, and beyond 8 weeks. ROC analyses were performed on the measurements in millimeters obtained from the skin prick test results according to this categorization. Diagnostic power of SPT was evaluated considering the patients' time of presentation. For cases presented ≤ 4 weeks, a cut-off = 1.5 mm resulted in a sensitivity of 67% and specificity of 50%. When the cut-off was set at 2.5 mm under the same conditions,

Figure 2 - Diagnostic evaluation of SPT in distinguishing Apis mellifera from Vespula vulgaris using ROC analysis.

Application time ≤ 4 weeks	Application time	Cut off value	Sensitivity	Specificity	AUC SE	ficity AUC	P-value	95% Confidence Interv (Minimum - Maximum	
	1.5 67%	50%	0.60	0.10	0.26	0.22	1.00		
	2.5	33%	83%	0.69	0.18	0.36	0.33	1.00	
> 4 weeks	1.5	57%	50%						
	2.5	47%	62%	0.60	0.12	0.39	0.36	0.84	
	3.5	27%	87%						
> 8 weeks	1.5	63%	60%						
	2.5	50%	80%	0.73	0.12	0.11	0.49	0.97	
	3.5	31%	100%						

Table IV - Diagnostic values of SPT in distinguishing Apis mellifera from Vespula vulgaris.

the sensitivity was 33% and specificity was 83% (AUC = 0.69; p = 0.36; 95%CI 0.33-1.00). In cases presented > 4 weeks, the statistical evaluation yielded a sensitivity of 57% and specificity of 50% for a cut-off = 1.5 mm (AUC = 0.60; p = 0.39; 95%CI 0.36-0.84). The calculated cut-off values and diagnostic values for SPT according to the patients' presentation times are shown in **table IV**.

In our study, irrespective of the patients' time of presentation, ROC analysis was conducted to determine the most appropriate cut-off point for distinguishing between *Apis mellifera* and *Vespula vulgaris* species based on the reaction diameters measured in SPT. In this assessment, the area under the curve (AUC) was calculated as 0.633 (95%CI 0.45-0.81), and a sensitivity of 86% and specificity of 93% were found for a 3.5 mm cut-off value (p = 0.153)

Discussion and conclusions

Venom immunotherapy (VIT) is highly effective, with 77% to 84% of patients protected from anaphylaxis after bee venom VIT, and this rate increases to 91% to 96% following wasp venom VIT (2, 8). However, VIT is expensive and time-consuming, requiring a treatment duration of at least 3 to 5 years. According to the guidelines of the European Academy of Allergy and Clinical Immunology for specific immunotherapy for Hymenoptera venom allergy, allergen-specific immunotherapy is recommended for children and adults who have systemic allergic reactions exceeding general skin symptoms, with documented sensitivity to the culprit insect's venom, determined by skin tests and/or specific serum IgE (sIgE) tests and/or basophil activation test (BAT) (9, 10). All three test methods can provide valuable information in the immunotherapy process for bee allergy. While the basophil activation test offers a sensitive approach to determining cellular response, specific IgE tests and Skin Prick tests are more commonly used methods with quicker results. The combination of these tests and consideration of clinical symptoms are important in determining the treatment plan. The advantages and limitations of each test method should be considered to select the most appropriate diagnostic approaches for individual patients. The bee species identified in a patient's history may not always align with the results from diagnostic tests, or there may be sensitivities to multiple bee species. This can be due to a person's sensitivity to multiple bees or cross-reactivity between bee venom allergens or both (11). Basophil activation test (BAT) helps in diagnosing clinically relevant venoms in cases where routine tests (specific IgE, skin tests) are inconclusive in Hymenoptera venom allergy. A study in our country identified bee venom as the most common cause of anaphylaxis in adults, accounting for 60.8% of cases. However, the basophil activation test (BAT) is not yet widely used as a first-line test in venom allergy diagnosis and is only available in a few centers in our country and worldwide. Nevertheless, the role of BAT in the diagnosis of Hymenoptera venom allergy (HVA) is well known. When basophils are activated, surface markers such as CD63 and CD203C increase. Measurement of these markers by flow cytometry is a reliable method in allergy diagnosis.

In our study, the sensitivity of BAT for *Apis mellifera* was found to be 95.5%, with a PPV of 95.5% and an LR of 5.72. Similarly, for *Vespula vulgaris*, the sensitivity was 83.3%, PPV 83.3%, and LR 18.51. A study in the literature found the sensitivity of BAT to be between 83-92% and specificity between 80-100% (12, 13). In our study, dual sensitivity was detected in 39.5% of patients in the DPT test and in 22% of patients in the spIgE test, while no dual sensitivity was observed in the BAT test. Therefore, BAT plays a crucial role in treatment decisions in cases of dual sensitivity. While additional diagnostic tests are not mandatory when SpIgE and skin prick test results are definitive and consistent, in "difficult cases" where SpIgE and DPT results are negative or contradictory, the use of BAT is recommended. This is especially true in cases of double positivity to wasp and bee venoms (14). In a previous study, 19 out of 26 patients (73%) who

had systemic allergic reactions, with negative skin prick tests and undetectable specific IgE, had positive BAT results for a single venom (6 for bee venom, 7 for wasp venom), and six were positive for both venoms (15). BAT has been found applicable in patients with very low sIgE levels where inhibition tests are not possible. It offers additional advantages over specific IgE tests, as basophils are not activated by clinically insignificant IgE antibodies. 75% of 47 sIgE negative patients had a positive reaction in the basophil activation test (15).

In our study, 39.5% of participants had positive Skin Prick Tests (SPT) for both bee species. For patients with double sensitivity, basophil activation test results were considered before starting immunotherapy treatments. Moreover, 4 patients had both skin test and sIgE results negative. Nevertheless, based on clinical history and basophil activation results, venom immunotherapy against *Apis mellifera* was initiated.

A study in the literature indicated that the general clinical sensitivities of the basophil activation test, specific serum IgE, and skin test were 90%, 76%, and 64%, respectively. The same study found the PPVs for these three tests for bee venom were 79%, 73%, and 78%, for wasp venom 86%, 59%, and 43%, and for both venom types 84%, 77%, and 22%, respectively (16).

In our study, the clinical sensitivities for Apis mellifera were determined as 95.5%, 95.7%, and 48.4%; for Vespula vulgaris as 83.3%, 100%, and 33.3%, respectively. SpIgE demonstrated high sensitivity and PPV ranging between 95.7% and 100%. BAT similarly showed high sensitivity and PPV values. However, SPT had some limitations with lower sensitivity and PPV. These results should be considered significant factors in the selection of tests for the diagnosis of venom allergy and should guide future research in this field. Following a systemic reaction to venom, a skin prick test may be conducted depending on the patient's clinical condition and stability. Skin prick testing can provide rapid, cost-effective, and clinically valuable results. Typically, reaction diameters below 3 mm are considered negative in the literature. However, it is generally advisable to wait for a certain period after a systemic reaction before performing a skin prick test. This waiting period usually ranges from 4 to 6 weeks but may occasionally yield negative results for up to 6 months.

Beekeeping is prevalent in our region, with many patients being beekeepers or their children. Patients prefer to commence treatment as soon as they seek medical attention. However, in our study, skin prick tests were negative in 55% of patients upon initial presentation. Hence, our aim was to establish a new cutoff value for early-stage skin prick tests. In cases with a history of systemic reaction, a cutoff of 1.5 mm was accepted for both bee species in instances lasting 4 weeks or less, with a sensitivity of 67% and specificity of 50%. Conversely, a cutoff of 2.5 mm resulted in a sensitivity of 33% and specificity of 83% (AUC = 0.69; p = 0.36; 95%CI = 0.33-1.00). The absence of these sensitivities in healthy individuals underscores a limitation of our study.

In contemporary medical practice, component-resolved diagnosis (CRD) methodologies represent a significant advancement in bee venom immunotherapy, employing molecular diagnostic techniques. CRD facilitates the identification of specific IgE sensitivities to bee venom components, enabling treatment processes to be more targeted and personalized. Compared to traditional skin prick tests or total IgE tests, CRD more effectively distinguishes cross-reactivity situations and simplifies the management of patients with sensitivities to multiple venoms. This method allows for the development of specialized immunotherapy formulations for individuals sensitive to specific venom components. The implementation of CRD aids in predicting the response to immunotherapy and reduces the need for potentially dangerous allergen skin tests, thereby enhancing safety for patients at high risk of severe allergic reactions. However, the widespread adoption of CRD is hampered by challenges such as high costs and limited accessibility. These challenges are particularly pronounced in healthcare systems with limited resources, inhibiting the broad utilization of CRD. Therefore, further research into the cost-effectiveness and accessibility of CRD is necessary. In our country, the access to these tests is still not at the desired level, which constitutes one of the limitations of our study. This shortfall highlights the importance of strategic planning and resource allocation for future advancements (18,19). In our study, we evaluated the relationship between basophil activation test, specific serum IgE, and skin prick test in the diagnosis of Hymenoptera venom allergy. We emphasize that each of these tests has its own significant advantages and limitations. We concluded that sIgE could be superior to BAT and SPT in terms of sensitivity and specificity in some cases. However, our study demonstrated that BAT could play a significant role, especially in situations of diagnostic uncertainty and in decisions regarding immunotherapy. We proposed that SPT is critical in determining early-stage reactions and in immunotherapy decisions, yet its cutoff values need reevaluation. Consequently, we believe the combined use of these three testing methods is important for a more comprehensive and accurate diagnosis of Hymenoptera venom allergy. This study can be considered a critical step in advancing diagnostic and treatment methodologies.

Fundings

None.

Contributions

ŞİKK, AY: data curation, writing – original draft, writing – review & editing. ŞİKK, EB, EA: conceptualization, data curation, writing – original draft. ŞİKK, DÖ, ÖT, RS, AY: conceptualization, writing – original draft, writing – review &editing. ŞİKK, RS, AY: conceptualization.

Conflict of interests

The authors declare that they have no conflict of interests.

References

- Antonicelli L, Bilò MB, Bonifazi F. Epidemiology of Hymenoptera allergy. Curr Opin Allergy Clin Immunol. 2002;2(4):341-6. doi: 10.1097/00130832-200208000-00008.
- 2. Sturm GJ, Varga EM, Roberts G, Mosbech H, Bilò MB, Akdis CA, et al. EAACI guidelines on allergen immunotherapy: Hymenoptera venom allergy. Allergy. 2018;73(4):744-64. doi: 10.1111/all.13262.
- Civelek E, Erkoçoğlu M, Akan A, Özcan C, Kaya A, Vezir E, et al. The Etiology and Clinical Features of Anaphylaxis in a developing country: A nationwide survey in Turkey. Asian Pac J Allergy Immunol. 2017;35(4):212-9. doi: 10.12932/AP0752.
- Boyle RJ, Elremeli M, Hockenhull J, Cherry MG, Bulsara MK, Daniels M, et al. Venom immunotherapy for preventing allergic reactions to insect stings. Cochrane Database Syst Rev. 2012;10(10):CD008838. doi: 10.1002/14651858.CD008838.pub2.
- Kucera P, Cvackova M, Hulikova K, Juzova O, Pachl J. Basophil activation can predict clinical sensitivity in patients after venom immunotherapy. J Investig Allergol Clin Immunol. 2010;20(2):110-6.
- Rodríguez-Vázquez V, López-Freire S, Méndez-Brea P, González-Fernández MT, Hernández-Pérez C, Vidal C. Basophil activation test to follow-up of patients treated with hymenoptera venom immunotherapy: a review of current evidence. Rev Alerg Mex. 2023;69(3):125-37. Spanish. doi: 10.29262/ram.v69i3.1135.
- 7. Cabrera CM, Palacios-Cañas A, Joyanes-Romo JB, Urra JM, Mur P. Basophil activation test as alternative method to CAP-inhibition in patients with double sensitization to vespid venoms. Mol Immunol. 2022;149:59-65. doi: 10.1016/j.molimm.2022.06.002.
- Ruëff F, Vos B, Oude Elberink J, Bender A, Chatelain R, Dugas-Breit S, et al. Predictors of clinical effectiveness of Hymenoptera venom immunotherapy. Clin Exp Allergy. 2014;44(5):736-46. doi: 10.1111/cea.12275.

- Alvaro-Lozano M, Akdis CA, Akdis M, Alviani C, Angier E, Arasi S, et al. EAACI Allergen Immunotherapy User's Guide. Pediatr Allergy Immunol. 2020;31 Suppl 25(Suppl 25):1-101. doi: 10.1111/pai.13189.
- Bilò MB, Pravettoni V, Bignardi D, Bonadonna P, Mauro M, Novembre E, et al. Hymenoptera Venom Allergy: Management of Children and Adults in Clinical Practice. J Investig Allergol Clin Immunol. 2019;29(3):180-205. doi: 10.18176/jiaci.0310.
- 11. Przybilla B, Ruëff F. Hymenoptera venom allergy. J Dtsch Dermatol Ges. 2010;8(2):114-30. doi: 10.1111/j.1610-0387.2009.07125.x.
- Mosbech H, Frew AJ. The immunologic response to hymenoptera venoms. In: Levine MI, Lockey RF eds. Monograph on Insect Allergy.
 th ed. Pittsburgh PA: DaveLambert Associates; 2003. p.75-9.
- 13. Golden DB, Kelly D, Hamilton RG, Craig TJ. Venom immunotherapy reduces large local reactions to insect stings. J Allergy Clin Immunol. 2009;123(6):1371-5. doi: 10.1016/j.jaci.2009.03.017.
- 14. Ebo DG, Hagendorens MM, Bridts CH, De Clerck LS, Stevens WJ. Hymenoptera venom allergy: taking the sting out of difficult cases. J Investig Allergol Clin Immunol. 2007;17(6):357-60.
- Kosnik M, Korosec P. Importance of basophil activation testing in insect venom allergy. Allergy Asthma Clin Immunol. 2009;5(1):11. doi:10.1186/1710-1492-5-11.
- Peternelj A, Silar M, Bajrovic N, Adamic K, Music E, Kosnik M, et al. Diagnostic value of the basophil activation test in evaluating Hymenoptera venom sensitization. Wien Klin Wochenschr. 2009;121(9-10):344-8. doi: 10.1007/s00508-009-1174-y.
- Orihara M, Takazawa T, Nagumo K, Sakamoto S, Horiuchi T, Saito S. Interpreting the results of early skin tests after perioperative anaphylaxis requires special attention: a case report and review of literature. J Anesth. 2020;34(4):624-9. doi: 10.1007/s00540-020-02802-x.
- Alfaya Arias T, Soriano Gómis V, Soto Mera T, Vega Castro A, Vega Gutiérrez JM, Alonso Llamazares A, et al. Hymenoptera Allergy Committee of the SEAIC. Key Issues in Hymenoptera Venom Allergy: An Update. J Investig Allergol Clin Immunol. 2017;27(1):19-31. doi: 10.18176/jiaci.0123.
- Antolín-Amérigo D, Ruiz-León B, Boni E, Alfaya-Arias T, Álvarez-Mon M, Barbarroja-Escudero J, et al. Component-resolved diagnosis in hymenoptera allergy. Allergol Immunopathol (Madr). 2018;46(3):253-62. doi: 10.1016/j.aller.2017.05.003.

Leticia de las Vecillas¹, Marta Sanchez-Jareño², Magdalena Lluch-Bernal¹, Santiago Quirce^{1,3}, Javier Domínguez-Ortega^{1,3}, Valentín López-Carrasco¹, Pilar Barranco^{1,3}

Nasal challenge with ketorolac: utility and safety in clinical practice

- ¹Department of Allergy, La Paz University Hospital, IdiPAZ, Madrid, Spain
- ²Medical Affairs, MSD Spain, Madrid, Spain
- ³CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain

KEY WORDS

Aspirin exacerbated respiratory disease; nasal ketorolac challenge; asthma; nasal polyps.

Corresponding author

Leticia de las Vecillas Department of Allergy La Paz University Hospital. IdiPAZ P.º de la Castellana 261 28046 Madrid, Spain ORCID: 0000-0003-4969-5678 E-mail: leticia.delasveci@gmail.com

Doi

10.23822/EurAnnACI.1764-1489.321

To the Editor,

aspirin and non-steroidal anti-inflammatory drugs (NSAIDs)-exacerbated respiratory disease (AERD-NERD) is characterized by an underlying Th2 airway disease exacerbated by the intake of this type of medication. The nasal challenge test with NSAIDs, specifically with lysine acetylsalicylic acid (NLC) or ketorolac (NKC), is indicated for its diagnosis as an alternative to oral/bronchial challenges when FEV1 < 70% or with uncontrolled asthma (1-3). NKC is also used as a first step in aspirin desensitization protocols for AERD-NERD patients (4, 5).

NKC has lower sensitivity, specificity, positive predictive value, and negative predictive value compared to OAC (gold standard) (6). This makes it necessary to perform an OAC to confirm AERD-NERD diagnosis when NKC is negative (1-3). Although NKC is considered a safe technique, some authors have reported extranasal symptoms during its performance (6, 7).

To evaluate the diagnostic utility and safety outcomes, we analyzed 19 NKC (intranasal increasing doses of ketorolac every 30 minutes up to 16.38 mg) performed at our institution in AERD-NERD patients. Negative tests were followed by a 500mg OAC. This work was approved by the Ethics Committee of our institution (PI-2860) and all patients gave their written informed consent. Six NKC were negative (32%) (table I). Of the patients who reacted, 1 (7.7%) presented isolated bronchial symptoms (chest tightness and FEV₁ decrease \geq 15%), 5 (38.5%) developed rhinitis (nasal discharge, nasal congestion, sneezing) and 4 (30.7%) presented bronchial symptoms and rhinitis (chest tightness, cough, nasal discharge, nasal congestion, sneezing). Furthermore, there were three patients (23.1%) who developed an anaphylactic reaction (generalized urticaria, palpebral angioedema, ear pruritus, chest tightness, cough, nasal discharge, nasal congestion, sneezing and conjunctivitis): two with a cumulative dose of 16.38 mg and one with 8.82 mg of ketorolac. No significant differences

Table I - Demographics, clinical characteristics and NKC outcomes.

n total = 19	Positive NKC $(n = 13)$	Negative NKC $(n = 6)$	P-value
Gender			0.630
Male	7	3	
Female	6	3	
Age (mean ± SD) (range)	45.62 ± 14.13 (25-64)	45.40 ± 17.85 (29-74)	0.979
Smoking habit (n,%)			0.837
Non-smoker	7 (54%)	3 (50%)	
Smoker	1 (8%)	1 (17%)	
Ex-smoker	5 (38%)	2 (33%)	
Baseline eosinophilia (median, IQR)	430 (230-830)	435 (110- 1130)	0.868
Total IgE (median, IQR)	204 (105- 1472)	508 (211-881)	0.374
Previous diagnosis (n,%)			
Rhinosinusitis	1 (8%)	1 (17%)	
Asthma and Rhinosinusitis	2 (15%)	0	
Asthma and polyps	1 (8%)	0	
Rhinosinusitis and polyps	9 (69%)	5 (83%)	
n sinus surgeries (mean ± SD)	1.67 ± 2.06 (non anaphylaxis) 3.43 ± 2 (anaphylaxis)	1.67 ± 2.25	
Actual treatment			0.689
None	0	1	
Corticosteroids + Montelukast	13	5	
Baseline PNIF (mean ± SD) (range) L/min	$130 \pm 40.4 \ (60-200)$	108.33 ± 41.2 (90-200)	0.568
Baseline FEV ₁ (mean ± SD) (range) mL	3,259.23 ± 1,035.75 (1,870-5,270)	3,526.67 ± 1,022.89 (2,050-4,860)	0.606
NKC outcomes			
Asthma	1	-	
Rhinitis	5	-	
Asthma and Rhinitis	4	-	
Anaphylaxis	3	-	

NKT: Nasal ketorolaco challenge; FEV1: forced expiratory volume in 1 second; PNIF: peak nasal inspiratory flow.

were found between the 3 patients who suffered an anaphylactic reaction compared to the other 10 patients with a positive NKC. The 6 patients with negative NKC underwent an OCA and two of them presented a positive challenge with bronchial symptoms and urticaria, respectively.

There were 15 patients in our cohort with a confirmed diagnosis of AERD-NERD: 13 with a positive NKC (86%) and 2 with a negative NKC followed by a positive OCA. Extranasal symptoms appeared in 61.5% of patients (38% asthma, 23% anaphylaxis).

To analyze possible associations SAS 9.3 software (SAS, Institute, Cary, NC, USA) was used.

The study by White *et al.* (6) found that 17% of patients with positive NKC had a decrease in FEV1 > 15% and the study by Quiralte-Castillo *et al.* (7) 4/21 patients presented with asthma symptoms although just 1 showed a decrease in FEV1 > 15%. When combined with OCA to desensitize AERD-NERD patients, NKC breakthrough reactions were associated with bronchospasm in 24% (5) to 39% (4) of cases and with extrapulmonary symptoms (ana-

phylaxis) in 7% (5) to 28% (4). If clinical signs appeared during the nasal or oral challenge, they were not specified.

Miller *et al.* (8) reported that 21/100 of positive NLC had bronchial and nasal symptoms but only 2 had decreased FEV1 > 15%. Seven patients also had urticaria. In positive NLC, Alonso-Llamazares *et al.* (9) and Casdevall *et al.* (10) reported exclusively nasal symptoms.

Inflammatory mediators migrate from the nasal mucosa to the lower airways after nasal challenge, causing bronchial inflammation (3). NKC has been proposed as a safer diagnosis challenge for patients contraindicated to bronchial or oral challenges. Despite not being statistically significant probably because of sample size, our findings suggest the technique may not be as safe in daily clinical practice as previously reported due to significant bronchial and systemic breakthrough reactions.

Differences in populations, drug-delivery techniques, and/or monitoring techniques may explain the disparity in results. A nasal nebulizer spray cannot provide us with information about where ketorolac tromethamine is being applied or how much can reach the lower airways (4). Contrary to this, administering L-ASA by means of a dosimeter allows accurate measurement of the dose and monitoring of the effective inspiratory volume at each step of the bronchial challenge (1). For all these reasons, we question the NKC indication in patients with FEV1 < 70% or with uncontrolled asthma.

In conclusion, in our cohort, NKC with 16.38 mg is a useful method for AERD-NERD diagnosis combined with an oral challenge. However, safety concerns have to be considered.

Fundings

None.

Contributions

All authors: conceptualization, data curation formal analysis, writing – original draft, writing – review & editing.

Conflict of interests

The authors declare that they have no conflict of interests.

References

- Izquierdo-Domínguez A, Bobolea I, Doña I, Campo P, Segura C, Ortega N, et al. Statement of the Spanish Society of Allergology and Clinical Immunology on Provocation Tests With Aspirin/Nonsteroidal Anti-inflammatory Drugs. J Investig Allergol Clin Immunol. 2020;30(1):1-13. doi: 10.18176/jiaci.0449.
- Kowalski ML, Asero R, Bavbek S, Blanca M, Blanca-Lopez N, Bochenek G, et al. Classification and practical approach to the diagnosis and management of hypersensitivity to nonsteroidal anti-inflammatory drugs. Allergy. 2013;68(10):1219-32. doi: 10.1111/all.12260.
- Bentabol-Ramos G, Saenz de Santa Maria-Garcia R, Vidal-Diaz M, Eguiluz-Gracia I, Testera-Montes A. The Utility of Nasal Challenges to Phenotype Asthma Patients. Int J Mol Sci. 2022;23(9):4838. doi: 10.3390/ijms23094838.
- Lee RU, White AA, Ding D, Dursun AB, Woessner KM, Simon RA, et al. Use of intranasal ketorolac and modified oral aspirin challenge for desensitization of aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol. 2010;105(2):130-5. doi: 10.1016/j. anai.2010.05.020.
- Cook KA, Modena BD, Wineinger NE, Woessner KM, Simon RA, White AA. Use of a composite symptom score during challenge in patients with suspected aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol. 2017;118(5):597-602. doi: 10.1016/j. anai.2017.02.016.
- White A, Bigby T, Stevenson D. Intranasal ketorolac challenge for the diagnosis of aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol. 2006;97(2):190-5. doi: 10.1016/S1081-1206(10)60012-9.
- Quiralte-Castillo J, Ávila-Castellano MR, Cimbollek S, Benaixa P, Leguisamo S, Baynova K, et al. Nasal Ketorolac Challenge Using Acoustic Rhinometry in Patients With Aspirin-Exacerbated Respiratory Disease. J Investig Allergol Clin Immunol. 2017;27(3):169-74. doi: 10.18176/jiaci.0118.
- Miller B, Mirakian R, Gane S, Larco J, Sannah AA, Darby Y, et al. Nasal lysine aspirin challenge in the diagnosis of aspirin - exacerbated respiratory disease: asthma and rhinitis. Clin Exp Allergy. 2013;43(8):874-80. doi: 10.1111/cea.12110.
- Alonso-Llamazares A, Martinez-Cócera C, Domínguez-Ortega J, Robledo-Echarren T, Cimarra-Alvarez M, Mesa del Castillo M. Nasal provocation test (NPT) with aspirin: a sensitive and safe method to diagnose aspirin-induced asthma (AIA). Allergy. 2002;57(7):632-5. doi: 10.1034/j.1398-9995.2002.t01-1-13447.x.
- Casadevall J, Ventura PJ, Mullol J, Picado C. Intranasal challenge with aspirin in the diagnosis of aspirin intolerant asthma: evaluation of nasal response by acoustic rhinometry. Thorax. 2000;55(11):921-4. doi: 10.1136/thorax.55.11.921.

ÂNIA TEIXEIRA¹, FILIPA CARVALHOSA¹, MARIANA FERREIRA LOPES¹, MARTA PINHEIRO¹, Inês Pádua^{1,2,3}

Online food allergen labeling: is it a matter of concern?

¹University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal

²UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal

³Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, Portugal

KEY WORDS

Food allergy; food allergen; labelling; online shopping.

Corresponding author

Ânia Teixeira
University Institute of Health Sciences (IUCS)
CESPU
Rua Central da Gandra,1317
4585-116 Gandra, Portugal
ORCID: 0009-0000-7473-2042
E-mail: aniateixeira@hotmail.com

Doi

10.23822/EurAnnACI.1764-1489.354

To the Editor,

food allergies are increasingly common and represent a significant public health concern. The main way to manage food allergies is to avoid the involved foods (1). In order to do that, food-allergic patients are often advised to rely on food products labels (2). Therefore, it is vital for food labels to clearly indicate allergens, ensuring the safety of consumers with allergies. The rise of e-commerce, accelerated by COVID-19, means more people are buying groceries online (3), highlighting the need for clear labeling in online stores to support safe shopping for those with allergies. The main objective of this cross-sectional study was to assess the online availability and compliance of food product labels, focusing on the identification of allergens.

Food labels from 230 products across four categories (bakery products (36.1%), breakfast cereals (28.3%), vegetable drinks (18.3%), and 40 commercially available complementary foods (CACFs) (17.4%)) were collected both on-site and online from

4 Portuguese grocery retailers/companies between February and March 2022. The information on the companies' web pages was analyzed and then compared with that on the physical label. All physical products used as a basis for comparison had a label available and an indication of allergens, in accordance with Regulation (EU) No. 1169/2011.

We have identified that 32.6% (n = 75) of products had no label available or readable online. The food category exhibiting the highest label unavailability was bakery products (n = 38; 45.8%), followed by breakfast cereals (n = 21; 32.3%) and commercially available complementary foods (n = 9; 22.5%). Our results also showed that, despite legal provisions, 50.4% (n = 116) of the online products had no allergen identification or declaration in the label when compared to the physical product. Bakery products presented the lowest compliance (39.5%) while the highest compliance was found in CACFs category (65%).

For the products that effectively had allergen identification in the ingredient list, 14.7% (34) also presented an allergen declaration in the end (as "contains X"). However, for the majority of these products (93%), the information contained in the allergen declaration was not in accordance with the list of ingredients. Concerning the precautionary labeling of food allergens (as "may contain traces of"), we also found that, when compared to the physical label, 64% of the online products did not present it. The results of our study reveal a concerning number of products with either unavailable or incomplete/unreadable online labels on websites that offer e-commerce options. Furthermore, we also report errors in allergen identification and/or declaration and discrepancies in the trace declaration between physical and online products, posing a potential threat to the safety and inclusion of consumers with food allergies.

Despite legislative obligations arising mainly from Reg. (EU) 1169/2011, inconsistencies in allergen labeling persist, highlighting the need for continuous monitoring and stricter enforcement to safeguard consumers with food allergies, especially on the online setting. Our findings align with the challenges reported in recent investigations for both allergen labelling (4, 5) and general food products online labelling (6, 7), although these studies do not address online allergen labeling. Then, our study provides a sample for a pioneering descriptive analysis in the European context considering the digital food environment for a consumer with food allergies, reinforcing the importance of monitoring labeling compliance and extending it to all products. Nevertheless, our study has some limitations, particularly with regard to the number and diversity of products analyzed. The results presented emphasize the need for effective compliance with labeling legislation and underscores the importance of collaborative efforts by regulatory bodies, manufacturers, and retailers to ensure the online accessibility and clarity of food labels. Addressing these issues is crucial to ensure the safety and well-being of consumers in the rapidly growing landscape of online food commerce.

Fundings

None.

Contributions

AT: conceptualization, methodology, formal analysis, investigation, writing – original draft. FC, MFL, MP: conceptualization, methodology, formal analysis, investigation. IP: conceptualization, methodology, writing – review & editing, visualization, supervision.

Conflict of interests

The authors declare that they have no conflict of interests.

References

- Sicherer SH, Sampson HA. Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J Allergy Clin Immunol. 2018;141(1):41-58. doi: 10.1016/j. jaci.2017.11.003.
- Venter C, Roth-Walter F, Vassilopoulos E, Hicks A. Dietary management of IgE and non-IgE-mediated food allergies in pediatric patients. Pediatr Allergy Immunol. 2024;35(3):e14100. doi: 10.1111/pai.14100.
- Shaw N, Eschenbrenner B, Baier D. Online shopping continuance after COVID-19: A comparison of Canada, Germany and the United States. J Retail Consum Serv. 2022;69:103100. doi: 10.1016/j.jretconser.2022.103100.
- Blom WM, van Dijk LM, Michelsen-Huisman A, Houben GF, Knulst AC, Linders YFM, et al. Allergen labelling: Current practice and improvement from a communication perspective. Clin Experimental Allergy. 2021;51(4):574-84. doi: 10.1111/cea.13830.
- Cunha ML, Vieira VRM, Santana AR, Anastácio LR. Food allergen labeling: compliance with the mandatory legislation in Brazil. Food Sci Technol. 2020;40(3):698-704. doi: 10.1590/fst.16219.
- Maganja D, Davies T, Sanavio L, Louie JCY, Huffman MD, Trieu K, et al. Current food labelling practices in online supermarkets in Australia. Int J Behav Nutr Phys Act. 2023;20(1):105. doi: 10.1186/s12966-023-01504-3.
- Pomeranz JL, Cash SB, Springer M, Del Giudice IM, Mozaffarian D.
 Opportunities to address the failure of online food retailers to ensure access to required food labelling information in the USA. Public Health Nutr. 2022;25(5):1375-83. doi: 10.1017/S1368980021004638,

clienti.codifa@lswr.it shop.edraspa.it

European Annals of Allergy and Clinical Immunology

- 6 print issues per year
- full access to www.eurannallergyimm.com, featuring all current and archived issues

European Annals of Allergy and Clinical Immunology

is a bimonthly peer-reviewed publication

- The official Journal of the "Associazione Allergologi Immunologi Italiani Territoriali e Ospedalieri" (Italian Association of Hospital Allergists and Immunologists AAIITO) and the "Sociedade Portuguesa de Alergologia e Immunologia Clinica" (Portuguese Society of Allergology and Clinical Immunology SPAIC)
- indexed in PubMed and Scopus
- collects reviews, original works concerning etiology, diagnosis and treatment of allergic and immunological disorders

To submit your paper go to http://eaaci.edmgr.com