Near fatal asthma: treatment and prevention

Food allergy in breastfeeding babies. Hidden allergens in human milk

Prevalence and associated factors for asthma in Brazilian and Japanese schoolchildren living in the city of São Paulo, Brazil

Patients with breakthrough reactions to iodinated contrast media have low incidence of positive skin tests

Omalizumab use during pregnancy for CIU: a tertiary care experience

Desensitization to Mycofenolate Mofetil: a novel 12 step protocol

An unexpected cause of anaphylaxis: potato

Heavy metal and tattoo: an allergy and legislative problem

Allergy in urban elderly population living in Campania region (Southern Italy). A multicenter study
European Annals
of Allergy and
Clinical Immunology

THE OFFICIAL JOURNAL OF AAIITO
ASSOCIAZIONE ALLERGOLOGI IMMUNOLOGI ITALIANI TERRITORIALI E OSPEDALIERI
THE OFFICIAL JOURNAL OF SPAIC
SOCIEDADE PORTUGUESA DE ALERGOLOGIA E IMMUNOLOGIA CLINICA

EDITORS IN CHIEF
R. Asero (Milano – Italy)
M. Morais - Almeida (Lisbon – Portugal)

HONORARY EDITOR
A. Sabbah (Angers – France)

ASSOCIATE EDITORS
S. Bonini (Roma – Italy), L. Cecchi (Firenze – Italy)
A. Tedeschi (Milano – Italy)

EDITORS-IN-CHIEF
R. Asero (Milano – Italy)
M. Morais-Almeida (Lisbon – Portugal)

HONORARY EDITOR
A. Sabbah (Angers – France)

ASSOCIATE EDITORS
S. Bonini (Roma – Italy), L. Cecchi (Firenze – Italy)
A. Tedeschi (Milano – Italy)

EDITORIAL BOARD
M.B. Bilò (Ancona – Italy)
F. Bonifazi (Ancona – Italy)
K. Brockow (München – Germany)
A.A. Cruz (Salvador – Brasil)
L. Delgado (Oporto – Portugal)
P. Demoly (Montpellier – France)
G. D’Amato (Napoli – Italy)
M. Drovet (Angers – France)
M. Fernandez-Rivas (Madrid – Spain)
A. Fiocchi (Milano – Italy)
D. Macchia (Firenze – Italy)
F. Mastrandrea (Taranto – Italy)
G. Moscato (Pavia – Italy)
C. Nunes (Portimao – Portugal)
M. Olivieri (Verona – Italy)
L.K. Poulsen (Copenhagen – Denmark)
O. Quercia (Faenza – Italy)
A. Romano (Roma – Italy)
D. Soled (Sao Paulo – Brasil)
A. Todo Bom (Coimbra – Portugal)
S. Voltolini (Genova – Italy)

SCIENTIFIC COMMITTEE
L. Antonicelli (Italy)
A. Benet (Turkey)
H. Bazin (Belgium)
J. Bellanti (USA)
C. Geller-Bernstein (Israel)
S. Bonini (Italy)
G.W. Canonica (Italy)
M. Cugno (Italy)
B. David (France)
S. Durham (UK)
R. de Marco (Italy)
G.P. Girolomoni (Italy)
R. Jarish (Austria)
S.G.O. Johansson (Sweden)
S. Levi-Shaffer (Israel)
P. Lowenstein (Denmark)
J.L. Malo (Canada)
A.G. Palma-Carlos (Portugal)
G. Scadding (UK)
G. Scadding (UK)
E. Stevens (Belgium)
R. van Ree (Amsterdam)

FOUNDER AND CORRESPONDING MEMBER
G.M. Halpern (USA)
European Annals of Allergy and Clinical Immunology will accept for publication suitable manuscripts dealing with the aetiology, diagnosis, and treatment of allergic and immunologic diseases. These might include the study of methods of controlling immunologic and allergic reactions, human and animal models of hypersensitivity and other aspects of basic and applied clinical allergy in its broadest sense. We encourage case reports that focus on topic(s) of extreme contemporary interest. Paper reporting the results of drug trials will be considered. European Annals of Allergy and Clinical Immunology also publishes solicited and unsolicited review articles on subjects of topical interest to clinical and experimental allergy.

Manuscript

We request that all manuscripts should be submitted online through our web-based peer review system. Submitted contributions are accepted for publication on the basis of scientific interest and relevance, at the final discretion of the Editors in Chief, who will have blinded written evaluations from at least two anonymous reviewers.

Once a manuscript has been accepted for publication, Authors will receive an electronic page proof for review and approval, following which the manuscript is published in the print journal and on the journal website. Following acceptance, Authors are also requested to return both completed and signed Journal Publishing Agreement and Conflict of interest disclosure forms by e-mail to: c.scelsi@lswr.it

Full Authors Guidelines, online Submission System link, Journal Publishing Agreement and Conflict of interest forms are available on Journal website: www.eurannallergyimm.com

Typed manuscripts at 30 lines per page: maximum length 10 pages, around 300 lines.

Manuscripts should be typewritten (double spacing) on one side of the paper; on a separate sheet, should bear the title of the paper, name, postal and e-mail address of the Author, together with the name of institution where the work was done.

Generally, papers should be divided into the following parts and in the order indicated:

1. Summary and key words: english, limited to 15 lines.
2. Introduction: containing the reasons for doing the work.
3. Materials and methods.
4. Results: these should be given concisely; the use of tables and figures to illustrate the same results will only rarely be allowed.
5. Discussion: the presentation of results should be separated from a discussion of their significance.
6. References.

Units and Abbreviations

European Annals of Allergy and Clinical Immunology recognizes the adoption of the International Systems of Units (SI-Units). Abbreviations to be put in a glossary at the foot of page 1 on the text.

References

References should be in the order:

- the order number corresponding with that of appearance in the text;
- the author's name(s), followed by initial or first name;
- the title of the work, in the original language;
- for journals: usual title abbreviations according to international nomenclature and in the order: year, volume number, issue number (in parenthesis), first and last page numbers of the work.

For example:

- for books: name of the author/editor, title, publisher/institution, town where published, year of publication, first and last page numbers of the work.

For example:

Illustrations

- Figures always on separate numbered sheets and legends on the back in pencil
- Figures always saved on separate numbered files
- Figures, diagrams: JPG, 300 dpi minimum
- Radiographs: JPG, 300 dpi minimum

All tables, figures, radiographs, etc. must be referenced in the text. Legends should be put on a separate sheet, saved on a separate file and have the same numbers as the figures.

The “pdf” of the article will be sent to the author by e-mail.

EDRA SpA
Via Spadolini, 7
20141 Milano - Italy
Tel. 0039 (0)2-88184.1
Fax 0039 (0)2-88184.301
www.eurannallergyimm.com
Table of Contents

Review

Near fatal asthma: treatment and prevention ... 116
G. D’Amato, C. Vitale, M. Lanza, A. Sanduzzi, A. Molino, M. Mormile, A. Vatrella, MB. Bilò,
L. Antonicelli, M. Bresciani, C. Micheletto, A. Vaghi, M. D’Amato

Original Articles

Food allergy in breastfeeding babies. Hidden allergens in human milk 123
M.F. Martín-Muñoz, F. Pineda, G. García Parrado, D. Guillén, D. Rivero, T. Belver, S. Quirce

Prevalence and associated factors for asthma in Brazilian and Japanese schoolchildren living
in the city of São Paulo, Brazil ... 129
I. Camelo-Nunes, M. Carvalho Mallozi, FC. Lanza, D. Solé

Patients with breakthrough reactions to iodinated contrast media have low incidence
of positive skin tests ... 137
A. Berti, E. Della-Torre, MR. Yacoub, E. Tombetti, V. Canti, MG. Sabbadini, G. Colombino

Case Reports

Omalizumab use during pregnancy for CIU: a tertiary care experience 145
L. Cuervo-Pardo, M. Barcena-Blanch, C. Radojicic

Desensitization to Mycofenolate Mofetil: a novel 12 step protocol 147
M. Smith, A. Gonzalez-Estrada, J. Fernandez, A. Subramanian

An unexpected cause of anaphylaxis: potato .. 149
H. Eke GunGor, S. Uytun, U. Murat Sahiner, Y. Altuner Torun

Heavy metal and tattoo: an allergy and legislative problem 153
A. Tammaro, G. Cortesi, F. Pigiaccielli, FR. Parisella, F. Persechino, G. De Marco, S. Persechino

Letter to the editor

Allergy in urban elderly population living in Campania region (Southern Italy).
A multicenter study .. 156
G. Liccardi, G. Baldi, A. Berra, A. Ciccarelli, M. Cutajar, M. D’Amato, R. D’Angelo,
R. Parente, A. Pedicini, A. Pio, M. Russo, A. Salzillo, A. Stanziola, A. Vatrella,
F. Manzi, MB. Bilò
Near fatal asthma: treatment and prevention

Summary
Near-fatal asthma (NFA) is described as acute asthma associated with a respiratory arrest or arterial carbon dioxide tension greater than 50 mmHg, with or without altered consciousness, requiring mechanical ventilation. Risk factors for near fatal asthma have not been fully elucidated. In 80-85% of all fatal events, a phenotype, characterized by eosinophilic inflammation associated with gradual deterioration occurring in patients with severe and poorly controlled asthma, has been identified. Regarding to the management, acute severe asthma remains a significant clinical problem, which needs to be identified to facilitate early and appropriate therapeutic interventions. The assessment relies on clinical signs, but additional information might be obtained from chest radiography or blood gas analysis. No investigation should delay the initiation of appropriate therapy. The goals of therapy are the maintenance of oxygenation, relief of airflow obstruction, reduction of airways edema and mucus plugging (with increased use of medications such as beta-agonists via metered dose inhalers and nebulizers, oral and/or intravenous corticosteroids and oral or intravenous theophylline) whereas supporting ventilation as clinically indicated. Of course, the emergency physician needs to consider the wide range of potential complications, as attention to these problems when managing severe acute asthma might significantly improve outcome. An understanding of the available agents and potential pitfalls in the management of NFA is mandatory for the emergency physician.

Background
Asthma is a significant public health problem that is increasing in prevalence and is associated with relevant morbidity and financial costs (1,2). There is suggestion that asthma-related deaths are decreasing, but a significant minority of individuals presents with severe asthma and have persisting daily symptoms, and exacerbations despite compliance with high doses of inhaled steroids and additional treatment. For this small part of the asthmatic population, the exacerbation can become fatal or near-fatal (1-10). These observations appear to be paradoxi-
Near fatal asthma: treatment and prevention

Near fatal asthma (NFA) is described as acute asthma associated with a respiratory arrest or arterial carbon dioxide tension greater than 50 mmHg, with or without altered consciousness, requiring mechanical ventilation (8). Two distinctive phenotypes of NFA have been identified. The most common phenotype, responsible for 80-85% of all fatal events, is characterized by eosinophilic inflammation associated with gradual deterioration over days or weeks occurring in patients with severe and poorly controlled asthma, and is slow to respond to therapy. This phenotypic pattern is generally considered preventable. The second phenotype, with neutrophilic inflammation, has both rapid onset and response to therapy (4,7,11).

Risk factors

Remodeling in asthma refers to structural changes in large and small airways, consisting of subepithelial fibrosis, increased vascularity, increased airway smooth muscle mass, and goblet cell hyperplasia of proximal and distal airways. Remodeling was believed originally to be the cause of refractory asthma, that is, asthma that fails to respond to optimal treatment and is characterized by persistent airflow limitation. A history of intensive care admission or mechanical ventilation is a well-documented indicator of subsequent NFA (12). Gelb et al. found that in NFA patients the sensitivity for the presence of moderate and/or severe obstruction was 90%, the specificity was 61%, the positive predictive value was 41%, and the negative predictive value was 95%. The sensitivity for an abnormal loss of lung elastic recoil (i.e., less than the predicted normal mean _1.64 SD) was 100%, the specificity was 79%, the positive predictive value was 59%, and the negative predictive value 100% for NFA patients (13). Using TLC percent predicted as a surrogate for elastic recoil, the sensitivity for TLC of > 115% predicted was 70%, the specificity was 70%, the positive predictive value was 88%, and the negative predictive value was 41% for NFA patients (13). Using the ratio of FEV1 percent predicted to TLC percent predicted of < 0.70, the sensitivity was 90%, the specificity was 78%, the positive predictive value was 56%, and the negative predictive value was 96% for NFA patients (13). The unexpected loss of lung elastic recoil in patients with chronic persistent asthma, and its significant physiologic contribution to adverse clinical complications including NFA, are novel prospective observations. This loss of lung elastic recoil was associated with increasing age, duration of asthma, and severity of expiratory airflow limitation, using postbronchodilator FEV1 percent predicted as the signal. Additionally, normal transdiaphragmatic pressures, despite the presence of hyperinflation in patients with NFA, extend similar observations about asthmatic patients without NFA (6,14). Postmortem series show pathological presence of inflammatory cells, mucus plugging, shedding of airway epithelium, airway oedema and smooth muscle hypertrophy (6,14). Airway obstruction in severe asthma that does not respond to conventional therapy, may be caused by mucus plugging (6,14). Evidence for the management of mucus plugging in adult patients with severe near fatal asthma is sparse. Chia et al. describe a patient with fatal asthma who responded dramatically to DNase following bronchoscopy and lavage after failing other therapies in a case report, and believe that the combined use of rhDNase, bronchial toileting and aggressive physiotherapy, on top of mechanical ventilation strategies and intravenous bronchodilators, helped turn the corner (15).

More recently Serrano-Pariente et al. analysed 179 asthmatics patients admitted to the hospital for an episode of NFA. Three clusters of patients with NFA were identified: cluster 1, the largest, including older patients with clinical and therapeutic criteria of severe asthma; cluster 2, with an high proportion of respiratory arrest, impaired consciousness level and mechanical ventilation; and cluster 3, which included younger patients, characterized by an insufficient anti-inflammatory treatment and frequent sensitization to Alternaria alternata and soybean (7).

Assessment

In a study of asthma patients admitted with a near-fatal episode, two-thirds of subsequent severe attacks or deaths occurred within 1 year of the previous life-threatening admission (16). The immediate assessment of patients with asthma should include the degree of respiratory distress (ability to speak, respiratory rate, use of accessory muscles, air entry), degree of hypoxia (cyanosis, pulse oximetry, level of consciousness) and cardiovascular stability (arrhythmias, blood pressure). Accessory muscle use, wheeze and tachypnoea might diminish as the patient tires (17) (table 1). The clinical examination might be misleading; occasionally asthmatics with poor perception of the severity of their asthma appear deceptively well, despite severe decrements in lung function. Although the assessment relies on clinical signs, additional information might be obtained from chest radiography or blood gas analysis. No investigation should delay the initiation of appropriate therapy. On chest radiography, an episode of acute asthma is characterized by hyperinflation of the lungs. Physiologically abnormal distribution of ventilation, perfusion and altered gas exchange. Expiratory flow limitation with incomplete expiration leads to hyperinflation of the lungs, adding to the elastic burden of the thorax. Passive elastic recoil is no longer sufficient to achieve effective expiration, and expiratory muscles are then actively involved in expiration (4,12). Progression of dynamic hyperinflation is associated with a higher intrathoracic pressure at the end of expiration (intrinsic Positive End Expiratory Pressure - iPEEP or auto-PEEP). Hyperinflation and higher intrathoracic pressures mean the respiratory muscles...
Hypoxaemia in asthma results from ventilation / perfusion mismatching and is thus usually easily corrected with modest increases in the fraction of inspired oxygen (e.g. 1-3 L/min via a nasal cannula or mask). Uncontrolled oxygen has been postulated to correct the effects of hypoxaemia and to compensate for any trend towards a fall in arterial oxygen tension associated with b2-agonist therapy (19). Short-acting, inhaled b2-agonists are the drugs of choice for treating acute asthma. Their onset of action is rapid and their side-effects are well tolerated. Salbutamol, the most frequently used b2-agonist in ED around the world, has an onset of action of 5 min and a duration of action of 6 h. b2-agonists have been described as rescue therapy for use in patients unresponsive to inhaled bronchodilator and systemic corticosteroid therapy, or when the inhaled route is not practical (20). The safety profile of short-acting-β2-agonists has been questioned due to possible detrimental effects on asthma control. Recent evidence and meta-analysis suggest an increased risk for cardiovascular complications in patients using β2-agonists (21,22). There is evidence suggesting that the frequent use of these drugs might increase the risk of premature death. The hypothesis that β2-agonists can have fatal adverse effects was first demonstrated in the late 1960, when Inman and Adelstein reported a 30-700% increase, depending on age, in asthma death in patients using pressurized aerosol containing, most often, isoprenaline (23). The excess mortality was attributed to overdosing but β-agonists came into focus again in the 1980, when more selective β2-agonists were introduced in metered-dose inhaler. A dose-dependent risk of death from asthma was reported, with increased up to 29-fold with the use of β2 agonists (24). Afterwards, large, randomised, double-blind

Table 1 - Markers of severe asthma.

<table>
<thead>
<tr>
<th>Inability to speak in full sentences</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV1 < 40%, predicted or PEF < 40% of best or predicted (< 25% in life-threatening asthma)</td>
</tr>
<tr>
<td>Oxygen saturations < 90-92%</td>
</tr>
<tr>
<td>PaO2 < 60 mmHg - PaCO2 > 45 mmHg</td>
</tr>
<tr>
<td>Use of accessory muscles or tracheal tugging</td>
</tr>
<tr>
<td>Pulsus paradoxus (> 15 mmHg decrease with inspiration). With severe muscle fatigue might be absent</td>
</tr>
<tr>
<td>Quiet chest on auscultation</td>
</tr>
<tr>
<td>Patient seated upright and unable to lie supine</td>
</tr>
<tr>
<td>Cyanosis and sweating</td>
</tr>
<tr>
<td>Confusion or decreased level of consciousness - Hypotension or bradycardia</td>
</tr>
</tbody>
</table>

Therapy

The goals of therapy are the maintenance of oxygenation, relief of airflow obstruction, reduction of airway o edema and mucus plugging whereas supporting ventilation as clinically indicated. High-flow oxygen has been assumed to be harmless, and is often used in the treatment of patients with acute asthma (18). Hypoxaemia in asthma results from ventilation / perfusion mismatching and is thus usually easily corrected with modest increases in the fraction of inspired oxygen (e.g. 1-3 L/min via a nasal cannula or mask). Uncontrolled oxygen has been postulated to correct the effects of hypoxaemia and to compensate for any trend towards a fall in arterial oxygen tension associated with b2-agonist therapy (19). Short-acting, inhaled b2-agonists are the drugs of choice for treating acute asthma. Their onset of action is rapid and their side-effects are well tolerated. Salbutamol, the most frequently used b2-agonist in ED around the world, has an onset of action of 5 min and a duration of action of 6 h. b2-agonists have been described as rescue therapy for use in patients unresponsive to inhaled bronchodilator and systemic corticosteroid therapy, or when the inhaled route is not practical (20). The safety profile of short-acting-β2-agonists has been questioned due to possible detrimental effects on asthma control. Recent evidence and meta-analysis suggest an increased risk for cardiovascular complications in patients using β2-agonists (21,22). There is evidence suggesting that the frequent use of these drugs might increase the risk of premature death. The hypothesis that β2-agonists can have fatal adverse effects was first demonstrated in the late 1960, when Inman and Adelstein reported a 30-700% increase, depending on age, in asthma death in patients using pressurized aerosol containing, most often, isoprenaline (23). The excess mortality was attributed to overdosing but β-agonists came into focus again in the 1980, when more selective β2-agonists were introduced in metered-dose inhaler. A dose-dependent risk of death from asthma was reported, with increased up to 29-fold with the use of β2 agonists (24). Afterwards, large, randomised, double-blind

Table 2 - Asthma complications.

| Pneumothorax |
| Pulmonary interstitial emphysema |
| Pneumoretroperitoneum |
| Cardiac arrhythmias |
| Myocardial ischaemia or infarction |
| Mucus plugging - Atelectasis - Pneumonia |
| Electrolyte disturbances (hypokalaemia, hypomagnesaeemia, hypophosphataemia) |
| Lactic acidosis - Hyperglycaemia |
| Theophylline toxicity |
Near fatal asthma: treatment and prevention

trials have been performed to test the hypothesis that the use of LABAs in asthmatic patients is associated with an increased risk of death (25). At present, patients with asthma should be initiated and maintained on sufficiently high doses of inhaled corticosteroids and only patients whose asthma cannot be controlled should receive additional β2-agonists on a regular basis in addition, LABA should be withdrawn from patients who do not profit from their use (1). The need for reliever medication, such as the inhaled short-acting β2-agonists (SABA) albuterol, along with daytime symptoms, nighttime waking and activity limitations, is used to assess symptom control in asthma and to estimate the risk of future exacerbations (1). The inclusion of reliever inhaler use in assessment of asthma control in adults, used on evidence that overuse of SABA medication is associated with poor symptom control, increased risk of exacerbations and death from asthma (26).

Adrenaline has been used both as a nebulized solution and intravenously. There are theoretical advantages to the preferential use of i.v. adrenaline as opposed to pure β2-agonists in acute severe asthma. Although bronchoconstriction is the major pathology in asthma, airway oedema might also make a significant contribution. Both the α-agonist and β-agonist effects of adrenaline might be beneficial, with the α-effect decreasing oedema and the β-effect responsible for bronchodilation. Anticholinergics block muscarinic receptors in airway smooth muscles, inhibit vagal cholinergic tone and result in bronchodilation. Ipratropium bromide has a mild additional bronchodilating effect when added to b-agonists, that might only be significant in severe asthma (20). Because anticholinergic agents and β2-agonists exert effects by different mechanisms, affect different-sized airways and have different pharmacodynamic and pharmacokinetic properties, the combined use of them is rational and is likely to result in improved bronchodilation. Corticosteroids have been shown to improve asthma symptoms by reducing airway inflammation, airway reactivity and decrease airway secretions. In addition to their anti-inflammatory effect, steroids increase the number and sensitivity of b-receptors on the bronchial smooth muscle (28,29). Objective improvements in airflow obstruction have usually not been demonstrated during the first 6-12 h of treatment with corticosteroids in acute asthma (30). Corticosteroids are recommended for most patients in the ED, particularly in those who do not respond completely to initial b2-agonist therapy. Corticosteroid administration reduces admission rates, decreases relapse rates and might also reduce the number of cases of fatal asthma. Because benefits from corticosteroid treatment are not usually seen for 6-24 h after administration, therapy should be instituted early. Low dose corticosteroids (80 mg/day of methylprednisolone or 400 mg/day of hydrocortisone) appear to be adequate in the initial management of adult patients (31). Higher steroid doses do not appear to offer a therapeutic advantage, and because the risk of myopathy is significant, especially in the mechanically ventilated patients, the concomitant use of systemic corticosteroids and paralytic agents should be avoided if at all possible. Importantly oral and i.v. routes of corticosteroid administration are equally efficacious with respect to rate of resolution of airflow limitation (32). The parenteral route is required in patients unable to take oral medication (intubated) or if absorption might be compromised (e.g. vomiting). There is some suggestion that for patients with severe symptoms, i.v. corticosteroid therapy might have an early effect (within 1-6 h) by reversing b2-receptor downregulation seen in chronic β2-agonist use (33). The use of i.v. aminophylline was associated with a higher incidence of adverse effects compared with standard care alone (34). Whether aminophylline has a place as an additional therapy after treatment with established medications such as inhaled b-agonists, systemic corticosteroids and i.v. magnesium remains uncertain. At the current time routine use of aminophylline in severe asthma cannot be recommended. Magnesium might be effective in acute asthma through a variety of mechanisms. This cation is an important cofactor in many intracellular enzymatic reactions. Magnesium has been shown to relax smooth muscle and might be involved with inhibition of smooth-muscle contraction. As an explanation for the effects of magnesium in acute asthma this is perhaps overly simplistic. Magnesium is involved in acetylcholine and histamine release from cholinergic nerve terminals and mast cells, respectively. Furthermore, the ability of magnesium to block the calcium-ion influx into the bronchial smooth muscle might have therapeutic benefit in severe acute asthma (35). A single dose of i.v. MgSO4 administered to patients with severe acute asthma has been shown to be effective. A multicentre trial demonstrated that 2 g of i.v. magnesium sulphate administered as an adjunct to standard therapy, improved pulmonary function in patients presenting to the ED with severe asthma. i.v. (36). Montelukast in addition to standard therapy produces rapid benefit and is well tolerated in adults who have acute asthma. Patients with severe bronchospasm requiring mechanical ventilation and not responding to conventional bronchodilator therapy might benefit from an inhaled volatile anaesthetic agent with bronchodilating properties such as halothane, enflurane or isoflurane (37-41). Use of these agents might result in hypotension and cardiac dysrhythmias, especially in hypoxic patients. Administration is complex and requires either an anaesthetic machine or alternative heat moisture connector device. For practical reasons this therapy is better reserved for use in the ICU. Despite appropriate therapy, there continues to be a small group of patients who deteriorate or those who present in extremis and require mechanical ventilation. The rate of intubation in patients with acute severe asthma is low at 3-8% (42). Surprisingly, only a few reports have described the use of
non-invasive ventilation (NIV) in patients with acute severe asthma (43,44). The positive pressures employed in the studies to date are generally less than 15 cm H2O, and whether CPAP or BiPAP is the optimal approach remains unknown. Although there are some similarities between asthma and chronic obstructive pulmonary disease, in asthma CO2 retention occurs late in the exacerbation and by that time the patient is often exhausted and has difficulty tolerating the NIV mask. Furthermore, patients with severe acute asthma are usually tachypnoeic and might struggle to coordinate their breathing with that of the machine and therefore find BiPAP uncomfortable. Mucous production is a feature of severe acute asthma and NIV can exacerbate sputum retention, and it is important that this is borne in mind when implementing NIV. A Cochrane review performed in 2005 concluded there are promising results in favour of the use of NPPV in severe acute asthma; however, the regular use of NPPV in status asthmaticus still remains controversial. Until large randomized controlled trials are completed, this therapy should be restricted, and routine clinical use cannot be recommended (45).

Invasive ventilation

Deteriorating consciousness, severe exhaustion and cardiopulmonary arrest are absolute indications for intubation and mechanical ventilation. Severe hypercapnia, acidosis and fatigue might not warrant immediate intubation, but rather aggressive and continuous bronchodilator therapy. Intubation and mechanical ventilation in the asthmatic should not be embarked upon lightly. Once it is apparent that invasive ventilation is required, experienced help should be sought. The optimal means of intubation is usually direct laryngoscopy, following rapid sequence induction. The best agents to use are those most familiar to the operator. Induction might effectively be achieved with propofol or thiopentone; however careful dosage adjustment is required for potential haemodynamic compromise. The asthmatic patient is often volume-depleted, with induction resulting in both loss of sympathomimetic tone and drug-induced vasodilation. Additional to this, the development of intrinsic PEEP with an inappropriate ventilation strategy might rapidly result in catastrophic circulatory collapse. In this regard ketamine with its sympathomimetic and bronchodilating properties has been advocated by many as the induction agent of choice (46). Inhalational volatile induction is attractive given the bronchodilating properties of these agents, and it might obviate the need for paralysis. It however requires specialized anaesthetic skills and equipment to be available in the emergency room, as transfer of such critically ill patients would be ill advised. Following induction, maintenance with fentanyl and midazolam is appropriate. Fentanyl is the opiate of choice because it inhibits airway reflexes, causes less histamine release than morphine, but on rare occasions can induce chest wall rigidity with rapid bolus dosing (47). Ongoing paralysis might initially be required to facilitate ventilation; however, because of the significant risk of critical illness polymyopathy (especially given the combination with steroids), neuromuscular blockade should be withdrawn as soon as possible. The incidence of myopathy in asthmatics on long-term nondepolarizing neuromuscular blocking agents has been reported as high as 30% (48). The mode of ventilation might be a crucial factor for a successful outcome of NFA. Mechanical ventilation is often difficult because the obstructive defect might result in dynamic hyperinflation. This might then lead to barotrauma, volutrauma or catastrophic haemodynamic compromise secondary to impairment of venous return. Regardless of the mode of ventilation selected, the goals of mechanical ventilation are to maintain adequate oxygenation, minimize dynamic hyperinflation, avoid barotrauma and accept some degree of hypercapnia until bronchodilators and steroids improve airflow. Outcome is improved in mechanically ventilated asthmatics by limiting airway pressure using a low respiratory rate and tidal volume, whereas permitting a moderate degree of hypercapnia and respiratory acidosis (49). Hypercarbia has not been found to be detrimental, except in patients with severe myocardial depression. Moderate degrees of hypercapnia with an associated acidosis (pH 7.15-7.2) are generally well tolerated. To prolong the expiratory time and allow adequate time for expiration, the breath rate can be reduced, or inspiratory time decreased thereby extending the inspiratory to expiratory (I:E) ratio to much greater than 1:2. Expiration should ideally be observed both clinically and on the ventilator graphics to be complete before the next breath is delivered. Pressure control ventilation might not be an ideal mode of ventilation for patients with NFA, as frequent fluctuations in airway resistance lead to variable tidal volumes and a risk of significant hypoventilation. The use of extrinsic PEEP remains controversial, in mechanically ventilated paralysed patients, and Tuxen found it to be of no benefit at low levels and detrimental at high levels, because the decrease in gas trapping was replaced by a rise in functional residual capacity (50). It should be noted that very large tidal volumes were used in the present study. Extrinsic PEEP might prevent airflow collapse by splinting the airways open (51); however, as a general rule, extrinsic PEEP should not exceed intrinsic PEEP, and ongoing clinical assessment for the presence of gas trapping and magnitude of FRC are mandatory. Ensuring adequate humidification of inspired gas is particularly important in the ventilated asthmatic, to prevent further thickening of secretions and drying of airway mucosa that might stimulate further bronchospasm. Finally, it should be noted that mechanical ventilation might compromise delivery of aerosolized bronchodilators. Drug delivery might vary from 0% to 42% in ventilated patients, and it is therefore important
to ensure compatibility between the delivery system and ventilator circuit used (52).

Table 3 - Initial ventilator settings in paralysed asthmatic patients.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>FiO2</td>
<td>1.0, then titrate to keep SpO2 > 94%</td>
</tr>
<tr>
<td>Tidal volume</td>
<td>5-6 mL/kg</td>
</tr>
<tr>
<td>Ventilator rate</td>
<td>6-8 breaths/min</td>
</tr>
<tr>
<td>Long expiratory time (I:E ratio)</td>
<td>> 1:2</td>
</tr>
<tr>
<td>Minimal PEEP</td>
<td>_5 cmH2O</td>
</tr>
<tr>
<td>Limit peak inspiratory pressure</td>
<td>< 40 cmH2O</td>
</tr>
<tr>
<td>Target plateau pressure</td>
<td>< 20 cmH2O</td>
</tr>
<tr>
<td>Ensure effective humidification</td>
<td></td>
</tr>
</tbody>
</table>

Conclusion

Acute severe asthma remains a significant clinical problem, which needs to be identified to facilitate early and appropriate therapeutic interventions. In this regard the identification of patients with a specific NFA phenotype could be helpful to prevent future severe asthma exacerbations. An understanding of the available agents and potential pitfalls in the management of NFA is mandatory for the emergency physician.

References

MF. MARTIN-MUÑOZ, F. PINEDA, G. GARCÍA PARRADO, D. GUILLÉN, D. RIVERO, T. BELVER, S. QUIRCE

Food allergy in breastfeeding babies. Hidden allergens in human milk

1Department of Allergy, Hospital La Paz Health Research Institute (IdiPAZ), Madrid, Spain
2Diater Laboratories, R&D Department, Madrid, Spain

Institution where the work was carried out: Department of Allergy, Hospital La Paz Health Research Institute (IdiPAZ), Madrid, Spain

Summary

Background. Food allergy is a rare disorder among breastfeeding babies. Objective. Our aim was to identify responsible allergens in human milk. Methods. We studied babies developing allergic symptoms at the time they were breastfeeding. Skin prick tests (SPT) were performed with breast milk and food allergens. Specific IgE was assessed and IgE Immunoblotting experiments with breast milk were carried out to identify food allergens. Clinical evolution was evaluated after a maternal free diet. Results. Five babies had confirmed breast milk allergy. Peanut, white egg and/or cow’s milk were demonstrated as the hidden responsible allergens. No baby returned to develop symptoms once mother started a free diet. Three of these babies showed tolerance to other food allergens identified in human milk. Conclusion. A maternal free diet should be recommended only if food allergy is confirmed in breastfed babies.

Key words
breastfed infants; food allergy; hidden allergens; human milk

Introduction

Breast milk is the optimal nutrition for infants. Whether breastfeeding protects against the development of allergies remains controversial (1,2,3). Some studies report protection with exclusive and prolonged breastfeeding (4,5,6), particularly in children prone to atopy (7,8). Other reports have suggested breast milk could be responsible for early sensitization to food (9,10,11). In a high-risk cohort, McGowan et al. (3) found an extremely high cumulative incidence of food allergy associated with breastfeeding. Food proteins ingested by women who are breastfeeding are absorbed and excreted into breast milk antigenically active. Eczema, colic, diarrhea and vomiting are frequent symptoms in exclusively breastfed infants, but rarely food allergy has been demonstrated in this group (12,13). In a multidisciplinary review of the literature concerning the impact of early feeding in infancy on later allergic manifestations, Van Odijk et al. (14) concluded that breastfeeding protects against the development of atopic disease, and this effect appears even stronger in children with atopic heredity. We studied babies developing allergic symptoms at the time they were breastfeeding. The aim of our study was to identify breast milk allergens involved in allergic reactions after breastfeeding.

Methods

Infants with immediate erythema, hives, vomiting, diarrhea, sneezing, coughing or breathlessness, during or within 1 hour of breastfeeding, were included in this study. The study was carried out in accordance with the ethical standards established in the Declaration of Helsinki. A written informed consent document, previously approved by the Ethics Committee (Hospital La Paz) was provided by the mothers before beginning the study and collecting the breast milk samples. The mothers provided us with
Results

Forty-seven breastfed babies (1-19 months) referred with immediate symptoms (urticaria, erythema or vomiting) at the time they were breastfeeding were evaluated to food allergy. Only five infants who had proved allergic symptoms after breastfeeding were studied.

Case 1: A 6-month-old girl with atopic dermatitis since her first month of life and exclusively breastfed suffered, from her second month, immediate erythema and pruritus on her face during breastfeeding. At 6 months of age, she developed generalized urticaria and vomiting 10 minutes after consuming her first bottle of humanized cow's milk formula. Specific IgE to cow's milk proteins was demonstrated in her serum and she was diagnosed with cow's milk allergy. Her mother started a cow's milk-free diet and the infant was fed with mixed breastfeeding with a hydrolyzed cow's milk formula and subsequently meat, fish, egg and lentils. When the baby was 10 months old, she experienced a new episode of hives around her mouth while breastfeeding. Her mother reported that 2 hours before she had eaten peanuts.

Case 2: A 14-month-old girl breastfed from birth who was tolerating cow's milk formula, meat, fruits and vegetables from eight and fish from ten months, developed hives affecting her face after ingesting a bottle of humanized cow's milk continuing breastfeeding. Her mother remembered that she had eaten peanuts 1 hour before breastfeeding. She had suffered from wheezing and atopic eczema from her second month.

Case 3: An exclusively mixed breastfeeding 3.5-month-old girl, suffering mild eczema from birth, began to develop recurrent hives on her face during breastfeeding. She had been tolerating humanized cow's milk formula since 1.5 months of her life. Her mother did not relate the appearance of symptoms with her previous ingestion of any suspicious food.

Case 4: An 8-month-old boy exclusively breastfed developed eczema on his face from 1 month of age. At 3 months of age he began to experience discomfort and occasional vomiting in the first hour after breastfeeding. He had started mixed feeding at 4 months with a humanized cow's milk formula and subsequently he had been tolerating cereals, meat and fruit. At 5 months of age, he developed uneasiness and vomiting, pruritus, erythema and worsening of his eczema 30 minutes after breastfeeding. His mother did not associate the appearance of symptoms with prior ingestion by herself of any particular food.

Case 5: A breastfed 15-month-old girl, suffering from atopic dermatitis and wheezing from her second month, developed at 5 months of age an allergic reaction (generalized urticaria, vomiting, respiratory distress and cyanosis) 10 minutes after ingesting 20 ml of a humanized cow's milk formula. Symptoms were controlled after applying adrenaline, corticosteroids and anti-histamine treatment. Specific IgE to cow's milk proteins was

Food tolerance was defined as the patients eating a specific food without symptoms occurring. In the case of food sensitization without previous ingestion, tolerance was assessed upon the introduction of the food by a controlled open food challenge. The clinical evolution of the infants was evaluated after establishing an infant and maternal free diet of identified allergen.
Food allergy in breastfeeding babies. Hidden allergens in human milk

Figure 1 - Recognition of food allergens by patients’ sera in the breast milk samples (A collected more than 24 h after ingesting specific foods and before ingesting the specific food; sample B collected 4-8 h after ingesting the specific food).

Table 1 shows detailed data concerning patients (age, sex, atopic dermatitis or asthma and results of SPPT with breast milk) and the mothers’ atopic diseases. Table 2 shows data about SPT total and specific IgE and tolerance to cow’s milk, hen’s egg, hake and peanut. No patient was sensitized to lentils. All 5 infants were sensitized to hen’s egg white, but 2 of them could tolerate it. Three were sensitized to cow’s milk but only one of them (Case 2) had tolerance. None of the infants had introduced peanuts in their diet but three of them had specific IgE to peanuts. Two infants were sensitized to hake, and both of them had eaten it without any symptoms. Figure 1 shows an image with the results of the immunoblot and immunoblot inhibition experiments.

Case 1 had a positive SPPT to breast milk sample B obtained after the mother had ingested peanuts. IgE in the patient’s serum recognized proteins of approximately 30 kDa in the collected breast milk after the ingestion of peanuts that were inhibited by peanuts. Case 3 had positive SPPT to breast milk sample B obtained after the mother had ingested egg. IgE in the patient’s serum recognized a group of proteins of approximately 14 and 30 kDa in the collected breast milk after the ingestion of hen’s egg, and this recognition was inhibited by egg white. Case 4 had a positive SPPT to breast milk sample B obtained after the mother had ingested cow’s milk. IgE in the patient’s serum recognized proteins of approximately 14 and 30 kDa in the collected breast milk after the ingestion of cow’s milk, egg white or cow’s milk, and all were inhibited with their respective allergens.

None of the infants had allergic symptoms after breastfeeding once their mothers started a specific allergen-free diet. Respect the other 42 children had consulted: 14 for erythema, 20 for vomiting and 18 for discomfort after breastfeeding. Only five...
hands or household objects. Lactation has been suggested as being responsible for early sensitization. About 50% of women excreted dietary antigens in breast milk, concentrations ranging 0.1 to more than 1000 ng/ml (20). Characteristics of lactating women such as atopy have not accounted for the variable secretion (16,17,21). Ovalbumin has been detected in 59% to 74% (24, 25), bovine B-lactoglobulin in 53% to 63% (3,16,17) and peanut proteins in about 48% (9) of lactating women. Also ovomucoid (10,15), alpha-S1-casein (18), gliadin (19), and other food allergens have been detected in human milk under physiological conditions. Nevertheless, breast milk rarely triggers allergic symptoms and the role of food allergens in breast milk in food allergy in infants is not clear.

Table 1 - Demographic and allergological data of the babies and their breastfeeding mothers.

<table>
<thead>
<tr>
<th>case</th>
<th>Age months</th>
<th>sex</th>
<th>baby</th>
<th>mother</th>
<th>Allergic History</th>
<th>A samples</th>
<th>B samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cows milk, egg, peanut and hake</td>
<td>Cow's milk</td>
<td>Egg</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>F</td>
<td>AD</td>
<td>AD</td>
<td>0</td>
<td>0</td>
<td>4.5</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>F</td>
<td>AD</td>
<td>AD</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td>F</td>
<td>AD</td>
<td>Asthma</td>
<td>0</td>
<td>3.2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>M</td>
<td>AD</td>
<td>Wheezing</td>
<td>0</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>F</td>
<td>AD</td>
<td>Wheezing</td>
<td>0</td>
<td>3.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

F (female), M (male), AD (atopic dermatitis). Results of SPPT babies with different breast milk A and B samples (mm average diameter); NA (not applicable, because of patient had a diagnosis of allergy to that food or patient is tolerating it at that time)

Table 2 - Results of skin prick tests, total and specific IgE; tolerance status (yes, no, or not introduced) to cow's milk, white egg, hake and peanuts in each case.

<table>
<thead>
<tr>
<th>Case</th>
<th>Total IgE Ku/L</th>
<th>Cow's milk prick IgE Tol</th>
<th>White egg prick IgE Tol</th>
<th>Hake prick IgE Tol</th>
<th>Peanut prick IgE Tol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72</td>
<td>4.5</td>
<td>4.6</td>
<td>no</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>147</td>
<td>3</td>
<td>3.44</td>
<td>yes</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>9.22</td>
<td>0</td>
<td>0.00</td>
<td>yes</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>5.03</td>
<td>0</td>
<td>0.01</td>
<td>yes</td>
<td>4.5</td>
</tr>
<tr>
<td>5</td>
<td>92</td>
<td>13</td>
<td>25</td>
<td>no</td>
<td>6</td>
</tr>
</tbody>
</table>

Discussion

We studied infants who developed immediate allergic symptoms to human milk. We demonstrated that they had specific IgE to cow's milk, egg or peanut, none of which had been introduced into their diet. All infants had atopic dermatitis, which is a risk factor for food allergy, and two of them suffered also from asthma. Sensitization in the studied infants could have occurred in utero or through breast milk, inhalation, contamination of
Two of our cases, 1 and 5, developed allergic symptoms after the first bottle of a cow’s milk formula. Chandra et al. (1) found an incidence of cow’s milk allergy of 0.5% (9/1749) in the first year of life with a frequency of exclusive breastfeeding of 52% at 3 months of age. Food allergens, other than cow’s milk, could be responsible for allergic reactions in breastfed infants (15,21). Negative SPPT to breast milk samples obtained after a 24 h period of a cow’s milk, egg or peanut-free diet and positive with samples collected after the ingestion of any of these foods and the results of immunoblotting experiments confirmed in each case the presence of hidden food allergens in the breast milk, justifying the appearance of symptoms when the babies were breastfeeding. Sera of the cases 1, 2 and 5, recognized in breast milk samples B (collected after mother ingestion of peanuts) 14 and 30 kDa allergens, this recognition was inhibited by previous incubation of sera with peanut. This/these 14 kDa allergen/s could correspond to Ara h 2, Ara h 5, Ara h 6, Ara h 7 or Ara h 10; and detected allergens of 30 kDa to an Ara h 3 fragment. Both major peanut allergens Ara h 1 and Ara h 2 have been previously identified in human milk by Vadas et al. (9) and Bernard et al. (22) who detected peanut allergens (Ara h 6) in human milk as early as 10 min after peanut ingestion, with peak values observed within the first hour after ingestion. Sera of cases 3, 4 and 5 recognized, in breast milk samples B collected after egg ingestion, proteins around 14 KDa, possibly and between 20-30 kDa possibly Gal d 4 (lysozyme) and Gal d 1 (ovomucoid). Hirose et al. (23) detected ovomucoid in 12 out 37 (32%) human breast milk samples. Case 5 recognized cow’s milk allergens between 14 to 30 kDa which could correspond to the Bos d 4, Bos d 5 and Bos d 8 (ε-lactalbumin, β-lactoglobulin and caseins of cow’s milk).

Böttcher et al. (26) and Järvinen et al. (27) observed an increased incidence of allergic disease in intentionally breastfed children. There is a prevailing opinion that breastfeeding decreases the allergy risk, and the mothers of high-risk infants might be more inclined to breastfeed than those of low-risk infants. Hong et al. (28) evaluated the effect of breastfeeding and gene-breastfeeding interactions in food sensitization in a birth cohort of 970 children, and observed that breastfeeding was associated with an increased risk of food sensitization; however, this effect was dependent on functional genetic variants in the IL-12 receptor b1, Toll-like receptor 9, and thymic stromal lymphopoietin genes. Liu et al. (29) evaluated a Boston birth cohort (n = 5,649) identifying a risk of sensitization for an IL4 gene polymorphism and 3 other genes.

Food allergens detected in breast milk could promote tolerance (30). Symptoms in our patients, during / after breastfeeding, disappeared when a cow’s milk, egg or peanut maternal free diet was started. However, Case 1 had hen’s white egg and Case 2 cow’s milk, egg and fish IgE and both of them showed tolerance to maternal or direct ingestion of this potential allergens. Du Toit et al. (31) demonstrated a protective effect of peanut consumption during lactation by the proportion of UK Jewish mothers not consuming peanuts during breastfeeding, compared with Israeli Jewish mothers who ate peanuts, considering the ten times higher prevalence of peanut allergy in this population living in the UK. IgA in human milk might modulate mucosal immune processes and factors that promote gut maturation, such as intestinal microbiota, which could reduce allergy risk (32). Several breast milk peptides were found to lower regulate neonatal immune activity, suggesting they might promote neonatal immune competence. Järvinen et al. studied the role of maternal elimination diets and human milk IgA in the development of cow’s milk allergy in the infants. They concluded that maternal CM avoidance was associated with lower levels of mucosal-specific IgA levels and the development of CMA in infants (33).

A consensus states that pregnant and breastfeeding women in general should not follow food allergen free diets (34,35). However, in case of allergic symptoms in breastfed babies, an allergic study should be performed to assessed food allergy.

Conclusion

Food allergens detected in breast milk could promote tolerance. A maternal free diet should be recommended only if food allergy is confirmed in breastfed babies.

Conflict of interests and funding

Authors declare that does not exist economic or other types of conflicts of interests and that the study did not receive funding

References

35. Kramer MS, Kakuma R. Maternal dietary antigen avoidance during pregnancy or lactation, or both, for preventing or treating atopic disease in the child. Evid Based Child Health. 2014;9(2):484-5.
Prevalence and associated factors for asthma in Brazilian and Japanese schoolchildren living in the city of São Paulo, Brazil

I. Camelo-Nunes¹, M. Carvalho Mallozi², FC. Lanza³, D. Solé⁴

¹University of Santo Amaro and Division of Allergy, Clinical Immunology and Rheumatology, Dept of Pediatrics, Escola Paulista de Medicina, Federal University of São Paulo (EPM-UNIFESP)
²Department of Pediatrics, ABC’s Faculty of Medicine and Division of Allergy, Clinical Immunology and Rheumatology, Dept of Pediatrics (EPM-UNIFESP)
³Universidade Nove de Julho (UNINOVE) and Respiratory Physiotherapist, Division of Allergy, Clinical Immunology and Rheumatology, Dept of Pediatrics, EPM-UNIFESP
⁴Division of Allergy, Clinical Immunology and Rheumatology, Dept of Pediatrics, EPM-UNIFESP

Summary

Objectives. Ethnic background interferes on the prevalence of asthma among schoolchildren (4 to 9 years old, SC) born and living in São Paulo, Brazil. Methods. International Study of Asthma and Allergy in Childhood (ISAAC)’s written standard and complementary questionnaires were applied to SC (similar socioeconomic status) living in the city of São Paulo: no-Japanese Brazilian (NJB, N = 306) and Japanese Brazilian (third generation, born in Brazil, from Japanese families with no miscegenation, JB, N = 258). Results. The prevalence of current asthma was significantly higher among NJB in comparison to JB (22.2% vs 14.7%, respectively). To have rhinitis and to exercise less than once/week were risk factors for both groups of children. Conclusion. Although both groups were apparently exposed to the same environment, other cultural differences do not allow us to conclude about the ethnic component having greater influence than the environment in the development of asthma in these individuals.

Introduction

Despite overall improvements in health, there is renewed concern that racial and ethnic disparities in health persist and in some cases may have expanded. Ethnic health disparities are inherently linked to immigration because ethnic identities are traced to the country of origin of an immigrant or their ancestors. A body of international literature suggests that there is an increased prevalence of atopy and asthma in immigrants following migration (1-16).

Migration studies examining children of the same ethnic background living in different environments for part or all of their lives may help to identify relevant factors to the development of diseases and may explain some of the observed geographic variations in prevalence. Leung et al. evaluated the prevalence of asthma and allergic diseases among Asian immigrants (Chinese) in Australia compared to non-Asian Australians and Asians born in Australia (1,2). They observed an increased prevalence of asthma among immigrants depending on time of immigration to Australia, regardless of age when immigrated, gender and atopic status, suggesting that the environment plays an important role in the pathogenesis of asthma and allergy (1,2). Similar results were observed by Wang et al.
in studying the prevalence of asthma among Canadian-born Chinese teenagers, young Chinese immigrants to Canada and young Chinese living in China, using data from the International Study of Asthma and Allergies in Childhood (ISAAC) phase 3. The prevalence of asthma among Chinese teenagers was lower than that of immigrants or those born in Canada, strengthening the influence of environmental factors on the prevalence of asthma (3). Other studies evaluated populations immigrated to Sweden (4), Italy (5-10), Israel (11), and United States of America (12-16).

In the last century, many people immigrated to Brazil, including the Japanese and nowadays they constitute the largest colony of Japanese individuals outside of Japan. The prevalence of current asthma in Brazil is 24.2% for children aged 6-7 years (17,18) while in Japan, it is 18.2% (18). This difference in prevalence opens the opportunity to evaluate the influence of environmental factors on ethnic factors, in relation to asthma. Brazilian children of Japanese ancestry (i.e. no mixed marriages and whose grandparents were born in Japan), despite sharing genetic polymorphisms with those Japanese children, were born and live in a different environment: Brazil.

Migrating populations with no miscegenation provide an opportunity to observe changes in disease with changes in environment, just as genetically different groups living in the same region allow study of the effects of genetic diversity. The aim of this study was to examine prevalence and risk factors for asthma manifestation among Brazilian children of Japanese ancestry and Brazilian children of non-Japanese ancestry period.

Materials and Methods

Children - children (aged 4 to 9) from three private schools - located in the southern part of the city of São Paulo, Brazil, and intended primarily for Japanese descendants (Japanese Brazilian, JB) - were invited to participate in this study. All schools were informed and accredited by the Japanese Consulate in São Paulo. After an initial agreement by telephone, an interview was scheduled with the school’s principal. Detailed explanation of the purpose of the study and the steps necessary to complete it correctly were provided (i.e. response to ISAAC written questionnaires (WQ) and informed consent signed by the parents or guardians). According to their origin children were divided into two ethnic groups, those born of marriages between Japanese only (third generation, born in Brazil, from Japanese families with no miscegenation; JB group) and those of non-Japanese Brazilian group (NJB). All students were from same socioeconomic level. Sample size was calculated considering a α error of 5%, power of the test equal to 80% and 10% of difference in the prevalence of asthma (groups JB and NJB). So, the sample was estimated in 256 students in each group.

Questionnaires - ISAAC, standard (prevalence, phase 1, WQ) and complementary (risk factors - phase 2; CQ) written questionnaires, translated and validated for Brazilian culture (19,20) were applied according to the ISAAC protocol and answered by parents. The CQ was applied in order to evaluate the association between possible risk factors and asthma development and was answered by the parents at classroom.

The answers to the questions were transcribed to a database used by the ISAAC (Epi-Info 6.0), with double entry. Statistical analysis - results were presented as percentage of affirmative responses among those applying. The comparative analysis between the two ethnic groups (JB and NJB) was performed by Chi-square test.

An affirmative answer to the question about wheeze in the last year and wheeze severe enough to limit speech in the last year defined SC with current asthma, and severe asthma respectively (18).

The groups of children with asthma symptoms and without asthma symptoms, in each ethnicity, were compared with respect to exposure to several factors identified by the CQ, and risk factors were identified by logistic regression. All variables from CQ were included in the univariate analysis and those with a $p < 0.20$ were included in the multivariate analysis and complemented with Forward stepwise regression. Variables with significant value were identified ($p < 0.05$).

Study was approved by the Ethics Committee of Federal University of São Paulo - Hospital São Paulo and all parents signed an informed consent.

Results

Table 1 shows the prevalence of asthma and related symptoms among NJB and JB children according to their progeny. The prevalence rates were in overall higher among NJB children. The prevalence of current asthma (22.2% vs 14.7%) and of wheezing with exercise (5.6% vs 1.9%) was significantly higher among NJB.

Table 2 shows the prevalence of asthmatic children exposed to some factors, during the first year of life and nowadays, and the comparison of the two progenies. NJB children were significantly more likely to: be born by cesarean section, have dog and birds in the house nowadays, have dog and birds in the house during the first year of life, doing exercise less than once a week, eating fish once a week, have fruits and crude vegetables twice a week. The JB were significantly exposed to: being breastfeed equal or more than 6 months, attending day care/nursery, having father with rhinitis, sharing bedroom nowadays, and taking soft drinks twice a week (table 2).

All these factors were submitted to a multivariate analysis and to logistic regression (tables 3). To have rhinitis and to do exercise less than once a week remained as independent risk factors for current asthma among JB and NJB. To be a boy and to have shared the bedroom in the first year of life increased the risk for asthma manifestation only among JBs (table 3). To have eczema and have lived in an urban area during the first year of life was significantly associated with asthma only in NJB children.
Given that the mixture of environment and genetic background may vary across racial/ethnic populations, in many instances it may be difficult to identify the causal genetic effect separately from the environmental one.

As already pointed out, migrating populations with stable genetics provide an opportunity to observe changes in disease due to changes in environment. The environment has unequivocally undergone changes over the past decades and it has been shown as an important risk factor associated mainly with westernized lifestyle (urbanization, lack of exercise, dietary patterns, air pollution, and indoor pollution by passive smoking and aeroallergens, improved hygiene and health care etc. (23,24).

To be born and to live in the same locality give us the wrong idea that our children, JB and NJB, would be exposed to the same environmental factors. However, we must take into account the importance of cultural factors that may significantly influence lifestyle. This fact becomes clear when evaluating the differences on exposures observed between JB and NJB. Significant differences occurred with respect to: type of delivery, duration of exclusive breastfeeding, type of feeding, having pets personal and family history of allergic diseases. We believed that some of these differences could be explained mainly by the maintenance of very ingrained habits in Japanese culture.

However, after logistic regression we observed some of our findings were unexpected. First of all we found that it remained as independent risk factors for current asthma, among JB and NJB, to have rhinitis and lack of exercise (less than once a week). Recent meta-analysis evaluated the prevalence and interrelationship between asthma, allergic rhinitis and eczema in children using data obtained from ISAAC questionnaires. The analysis has shown that the prevalence of children with a co-occurrence of asthma, eczema and allergic rhinitis was low, but significantly higher than could be expected by chance (25).

Finally, owning a dog and live in an urban area was identified as protective factors for NJB (table 3).

Discussion

This study was performed to examine the prevalence of asthma and related symptoms, as well as to identify risk factors for asthma manifestation among Brazilian children of Japanese ancestry (JB) and Brazilian children of non-Japanese ancestry (NJB). We observed lower prevalence of current asthma and related symptoms among JB born in Brazil, from non miscigenated marriages, in comparison to NJB students. However, our rates were close to those previously observed in Japan and obtained as part of the ISAAC phase III (18). Similar tendency was observed by other authors evaluating different immigrant populations (1,2,14,15,21). Indeed there are studies showing that the prevalence of asthma is lower among individuals who were not born in the country where the study was carried out. However, there are also evidences that the prevalence among immigrants, tends to match to that of the local population when enough time elapses (22).

So, regarding our findings, some questions remain with no answer: Would be the sample of JB schoolchildren evaluated by the ISAAC phase III in Japan representative of the country? Would be the ancestors of Japanese born in Brazil from the same locality of those Japanese who were evaluated in Japan? The lowest rate of interracial marriages would guarantee lower mixing of the JB population?

In fact, interactions among genetic, environmental and social factors seem to be crucial in determining the prevalence of asthma and asthma-related symptoms. Predictive factors for asthma vary among racial/ethnic groups (1-4,12). Identifying race/ethnicity-specific modifiable environmental and host-related factors can be important in developing targeted interventions to reduce the health and economic impact of asthma.

<table>
<thead>
<tr>
<th>Question</th>
<th>JB N = 258 (%)</th>
<th>NJB N = 306 (%)</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheezy ever</td>
<td>121 (46.9)</td>
<td>150 (49.0)</td>
<td>0.96 (0.80-1.14)</td>
</tr>
<tr>
<td>Wheezy last 12 months</td>
<td>38 (14.7)</td>
<td>68 (22.2)^1</td>
<td>0.66 (0.42-0.95)^1</td>
</tr>
<tr>
<td>More than 4 attacks last 12 months</td>
<td>6 (2.3)</td>
<td>5 (1.6)</td>
<td>1.42 (0.44-4.61)</td>
</tr>
<tr>
<td>Sleep disturbance last 12 months</td>
<td>22 (8.5)</td>
<td>41 (13.4)</td>
<td>0.64 (0.39-1.04)</td>
</tr>
<tr>
<td>Speech problem last 12 months</td>
<td>1 (0.4)</td>
<td>1 (0.3)</td>
<td>1.29 (0.81-2.05)</td>
</tr>
<tr>
<td>Asthma ever</td>
<td>20 (7.8)</td>
<td>21 (6.9)</td>
<td>1.22 (0.68-2.20)</td>
</tr>
<tr>
<td>Wheeze with exercise last 12m</td>
<td>5 (1.9)</td>
<td>17 (5.6)^1</td>
<td>0.35 (0.13-0.93)^1</td>
</tr>
<tr>
<td>Cough at night last 12 months</td>
<td>90 (34.9)</td>
<td>128 (41.8)</td>
<td>0.83 (0.67-1.03)</td>
</tr>
</tbody>
</table>

Chi-square/Fisher - ^p < 0.05
Table 2 - Factors associated to asthma manifestation identified by univariate analysis among children aged from 4 to 9 years according their progeny - comparisons between Japanese Brazilian (JBJ) and No-Japanese Brazilian (NJB).

<table>
<thead>
<tr>
<th>Associated factors</th>
<th>NJB</th>
<th>JB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth weight < 2500g</td>
<td>302</td>
<td>33</td>
</tr>
<tr>
<td>Cesarean section</td>
<td>290</td>
<td>247</td>
</tr>
<tr>
<td>Be twin</td>
<td>298</td>
<td>8</td>
</tr>
<tr>
<td>Breastfeeding</td>
<td>304</td>
<td>282</td>
</tr>
<tr>
<td>Breastfeeding ≥ 6 months</td>
<td>282</td>
<td>167</td>
</tr>
<tr>
<td>Breastfeeding ≥ 4 months</td>
<td>282</td>
<td>98</td>
</tr>
<tr>
<td>To have older brothers</td>
<td>304</td>
<td>157</td>
</tr>
<tr>
<td>To have younger brothers</td>
<td>303</td>
<td>87</td>
</tr>
<tr>
<td>Day care / nursery</td>
<td>303</td>
<td>53</td>
</tr>
<tr>
<td>Day care / nursery ≤ 1st year</td>
<td>53</td>
<td>31</td>
</tr>
<tr>
<td>Kind garden</td>
<td>284</td>
<td>284</td>
</tr>
<tr>
<td>Kind garden ≤ 1st year</td>
<td>283</td>
<td>14</td>
</tr>
<tr>
<td>Mother with asthma</td>
<td>306</td>
<td>15</td>
</tr>
<tr>
<td>Mother with rhinitis</td>
<td>306</td>
<td>110</td>
</tr>
<tr>
<td>Mother with eczema</td>
<td>306</td>
<td>19</td>
</tr>
<tr>
<td>Father with asthma</td>
<td>306</td>
<td>26</td>
</tr>
<tr>
<td>Father with eczema</td>
<td>306</td>
<td>84</td>
</tr>
<tr>
<td>Father with rhinitis</td>
<td>306</td>
<td>13</td>
</tr>
<tr>
<td>Share bedroom today</td>
<td>293</td>
<td>163</td>
</tr>
<tr>
<td>Share bedroom 1st year</td>
<td>244</td>
<td>139</td>
</tr>
<tr>
<td>Dog in the home today</td>
<td>306</td>
<td>96</td>
</tr>
<tr>
<td>Cat in the home today</td>
<td>306</td>
<td>16</td>
</tr>
<tr>
<td>Birds in home today</td>
<td>306</td>
<td>53</td>
</tr>
<tr>
<td>Dog in home 1st year</td>
<td>306</td>
<td>43</td>
</tr>
<tr>
<td>Cat in home 1st year</td>
<td>306</td>
<td>9</td>
</tr>
<tr>
<td>Birds in home 1st year</td>
<td>306</td>
<td>26</td>
</tr>
<tr>
<td>Smoking mother</td>
<td>294</td>
<td>31</td>
</tr>
<tr>
<td>Smoking mother 1st year</td>
<td>253</td>
<td>24</td>
</tr>
<tr>
<td>Smoking during pregnancy</td>
<td>253</td>
<td>21</td>
</tr>
<tr>
<td>Smoking in the house</td>
<td>303</td>
<td>41</td>
</tr>
<tr>
<td>Damp in home today</td>
<td>302</td>
<td>36</td>
</tr>
<tr>
<td>Damp in home 1st year</td>
<td>302</td>
<td>35</td>
</tr>
<tr>
<td>Mold today</td>
<td>300</td>
<td>27</td>
</tr>
<tr>
<td>Mold 1st year</td>
<td>259</td>
<td>25</td>
</tr>
<tr>
<td>Rural neighborhood today</td>
<td>278</td>
<td>57</td>
</tr>
<tr>
<td>Rural neighborhood 1st yr</td>
<td>236</td>
<td>46</td>
</tr>
<tr>
<td>Exercise less than once / week</td>
<td>298</td>
<td>241</td>
</tr>
<tr>
<td>Eat meat twice a week</td>
<td>300</td>
<td>88</td>
</tr>
<tr>
<td>Eat fish once / week</td>
<td>286</td>
<td>258</td>
</tr>
<tr>
<td>Fruits twice / week</td>
<td>294</td>
<td>103</td>
</tr>
<tr>
<td>Crude vegetables twice / week</td>
<td>294</td>
<td>182</td>
</tr>
<tr>
<td>Soft drink twice / week</td>
<td>299</td>
<td>195</td>
</tr>
</tbody>
</table>

Chi-square - Values in italic bold were p < 0.05; +ve = positive
Prevalence and associated factors for asthma in Brazilian and Japanese schoolchildren living in the city of São Paulo, Brazil

Asthma prevalence and morbidity used to be greater in urban areas. Despite the number of studies looking for information about the relationship between early life exposures and asthma in this “high-risk environment” this association remains not completely clear and the doubts persist.

The urban environment has a number of features that could have adverse effects on children’s respiratory health, especially during the first few years of life when the lung and immune system are rapidly developing (34).

However, there are limitations in ecological studies due to the difficulty in accurately estimating specific exposure - individual or combined - to infer a cause-effect (35-37). So the specific factors or combinations of factors that lead to asthma and/or protect against asthma when analysing the indoor and outdoor environment, remains not completely elucidated.

It is quite possible that the differences between the indoor environment of JB and NJB can explain our observations (i.e. no association between urban neighborhood over the 1st year and asthma manifestation, among JB). In other words, perhaps differences in customs and habits - between JB and NJB - account for differences in indoor environment and consequently in exposures.

On the other hand although, there is evidence suggesting that exacerbations of asthma may be triggered by different air pollutants, the association between air pollution and increased prevalence of asthma is still controversial (38). Maybe this association would be clearer during the first year of life for the NJB children and not detectable nowadays. We found that to have eczema

There is no doubt that asthma and rhinitis should be viewed as a single disease, considering the high frequency of association between them. The presence of allergic rhinitis was significantly associated with current asthma in both groups. This fact, amply reported by other authors (26,27) had been previously documented by our group in schoolchildren assessed by the ISAAC phase III when we observe that to have active rhinitis increased significantly the risk of active asthma, and severe asthma in those schoolchildren (28).

We found that JB and NJB children who exercised less than once a week had a risk 2.36 and 2.01 times higher, respectively, to manifest asthma. In this regard, several studies suggest that nutrients (e.g. omega-3 fatty acids, vitamin D) and consumption of fruits and vegetables protect against asthma, while obesity and lack of exercise could have the opposite effect (29-31). The links that exist between asthma and obesity suggest that obesity probably leads to asthma in many cases and could be in part responsible for the “asthma epidemic”. Moreover, there are two other very important factors - diet and exercise - which can favour both asthma and obesity in parallel. There is a growing body of literature that implicates specifically decreased physical activity, as a contributor to the increase in asthma prevalence and severity. Although the prevalence of asthma and related symptoms in our study has been lower among the JB, there were no differences regarding severity which remained intense in both groups (32,33).

To live in an urban area in the first year of life was significantly associated with asthma in NJB children. Intriguingly, among JB this effect was not observed, while the exposure to urban environment - nowadays - indeed protected NJB from asthma. Asthma prevalence and morbidity use to be greater in urban areas. Despite the number of studies looking for information about the relationship between early life exposures and asthma in this “high-risk environment” this association remain not completely clear and the doubts persist.

The urban environment has a number of features that could have adverse effects on children’s respiratory health, especially during the first few years of life when the lung and immune system are rapidly developing (34).

However, there are limitations in ecological studies due to the difficulty in accurately estimating specific exposure - individual or combined - to infer a cause-effect (35-37). So the specific factors or combinations of factors that lead to asthma and/or protect against asthma when analysing the indoor and outdoor environment, remains not completely elucidated.

It is quite possible that the differences between the indoor environment of JB and NJB can explain our observations (i.e. no association between urban neighborhood over the 1st year and asthma manifestation, among JB). In other words, perhaps differences in customs and habits - between JB and NJB - account for differences in indoor environment and consequently in exposures.

On the other hand although, there is evidence suggesting that exacerbations of asthma may be triggered by different air pollutants, the association between air pollution and increased prevalence of asthma is still controversial (38). Maybe this association would be clearer during the first year of life for the NJB children and not detectable nowadays. We found that to have eczema

Table 3 - Factors associated with symptoms of asthma among children aged from 4 to 9 years, according to their progeny: Japanese Brazilian (JB) or No-Japanese Brazilian (NJB) identified by Logistic regression.

<table>
<thead>
<tr>
<th>Associated factors</th>
<th>JB OR (95% CI)</th>
<th>NJB OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have cat nowadays</td>
<td>5.60 (0.89-35.33)</td>
<td>-</td>
</tr>
<tr>
<td>Urban neighborhood 1st year</td>
<td>-</td>
<td>5.32 (1.51-18.78)</td>
</tr>
<tr>
<td>Have rhinitis</td>
<td>3.71 (1.69-8.14)</td>
<td>2.85 (1.53-5.32)</td>
</tr>
<tr>
<td>Male gender</td>
<td>2.96 (1.34-6.57)</td>
<td>-</td>
</tr>
<tr>
<td>Have eczema</td>
<td>-</td>
<td>2.39 (1.06-5.40)</td>
</tr>
<tr>
<td>Father with asthma</td>
<td>-</td>
<td>2.39 (0.95-6.06)</td>
</tr>
<tr>
<td>Exercise less than once / week</td>
<td>2.36 (1.04-5.34)</td>
<td>2.01 (1.00-4.03)</td>
</tr>
<tr>
<td>Share bedroom 1st year</td>
<td>2.20 (1.00-4.87)</td>
<td>-</td>
</tr>
<tr>
<td>Have dog nowadays</td>
<td>-</td>
<td>0.47 (0.23-0.93)</td>
</tr>
<tr>
<td>Urban neighborhood nowadays</td>
<td>-</td>
<td>0.16 (0.05-0.49)</td>
</tr>
<tr>
<td>Father with eczema</td>
<td>0.16 (0.02-1.32)</td>
<td>-</td>
</tr>
</tbody>
</table>

1p < 0.05; - = not included in the analysis
increased in almost 2.4 fold the risk of asthma among NJB children. Intriguingly, we did not observe this association among JB. Whether eczema is a true risk factor for asthma has been debated, and the relationship between the different allergy-related disorders is unclear. There are evidences from cross-sectional and also from large prospective studies, indicating a strong association between eczema and asthma (28) period.

However, it is noteworthy that in addition to the early manifestation of eczema, it is commonly believed that the severity of eczema, male sex, early wheezing, heredity and allergic sensitisation are possible risk factors for the development of childhood asthma (39).

To be a boy and to have shared the bedroom in the first year of life increased the risk for asthma manifestation only among JB. We can not explain why the classical association “male gender and increased risk for asthma” did not occur among NJB. Gender seems to be an important determinant for asthma and allergies and its impact varies considerably from childhood into adolescence and adulthood. In childhood, boys are consistently found to be at increased risk of asthma, which has been explained by differential growth of lung/airway size, and immunological differences (40,41).

The hygiene hypothesis suggests a protective effect of large families, with many children living in the same environment and often sharing the same bed. This kind of environment favours viral infections and may increase the exposure to endotoxins, and these factors may protect the child from sensitization to aeroallergens, asthma and rhinitis.

A number of epidemiological studies, using different measures of crowding such as total number of residents in the home, number of siblings, number of persons sharing the bed, room occupancy, and population density, have reported an association between crowding and respiratory diseases (42).

There are studies demonstrating an inverse relationship between the number of people in the bedroom and the frequency of asthma (protection) (42) and others an association between sharing a bedroom during the first year of life and asthma (risk) (43).

Unlike one of the proposals of the hygiene hypothesis, we found that sharing a bedroom during the first year of life was a risk factor, not a protective factor for current asthma among JB.

In this study, the association between exposures to pets at home was different depending on ethnicity. Among JB, to have been exposed to a cat or a dog during the first year of life or nowadays did not exert any significant effect on asthma manifestation. On the other hand to be exposed nowadays to dogs protects NJB from the disease. The role of pet exposure, mainly cat and dog, inside the house as either a risk or a protection factor for childhood asthma manifestation is still controversial. Exposure to cats and dogs at home was evaluated in children aged 6-7 years and adolescents (13-14 years) participating in the ISAAC phase 3. Early-life exposure to cats was identified as a risk factor for symptoms of asthma, rhinoconjunctivitis, and eczema in 6-7-year-old children, especially in less-affluent countries. Current exposure to cats and dogs combined, and only to dogs, is a risk factor for symptom reporting by 13-14-year-old adolescents worldwide (44) period.

There are lots of evidence about the strong genetic component on allergic diseases and asthma manifestation. In this respect, maternal and paternal history of asthma and allergic diseases has been consistently implicated on a higher risk of childhood asthma, on the great majority of studies. Maternal history of asthma seems to has greater impact on the subsequent development of asthma in children, than paternal history of asthma.

Surprisingly, we did not observe a significant relationship between family history of allergic diseases and asthma manifestation neither among JB nor NJB. We can not explain this finding. Even knowing that this type of study could have led to memory bias, we didn’t believe that these items could explain the “absence of the role of maternal and paternal history on the risk of asthma development”.

In conclusion, we observed lower prevalence of current asthma and related symptoms among JB born in Brazil, from non mis-cigenated marriages, in comparison to NJB students. Different factors were implicated on the risk of asthma depending on ethnicity/race, except “to have rhinitis” and “lack of exercise” that were independent risk factors for current asthma among JB and NJB. “Owning a dog” and “living in an urban area” were the only protective factors identified just among NJB children.

It is known that genetically similar populations exposed to different environmental conditions display different temporal trends in the prevalence of allergic symptoms. However, because of the interaction and of the multiple causal pathways between the factors studied, the exact contribution or the exact influence that each one it would have exerted on differences and similarities observed - according to race/etinicity - is very difficult to establish and to validate.

Further studies in Brazil and Japan, including objective measures such as allergen skin prick test, bronchial hyperresponsiveness and environmental measurements (e.g., endotoxins and diesel exhaust particles) are necessary to identify the risk factors or protective factors associated with asthma.

References

41. von Mutius E. Progression of allergy and asthma through childhood to adolescence. Thorax. 1996;51:S3-S6.

Introduction

The term “breakthrough reactions” refers to repeated hypersensitivity reactions to iodinated contrast media (ICM), nowadays non-ionic, low-osmolality contrast media, despite premedication with glucocorticoids and antihistamines (1-4). A large amount of literature has been formerly written on this topic, when immunological mechanisms beyond hypersensitivity reactions were quite neglected (1-6). In fact, breakthrough reactions were often described without distinguishing if occurring after injection of the same rather than a different ICM responsible of the prior reaction (1,3,4). From a clinical perspective, patients with breakthrough hypersensitivity reactions to ICM are often patients who undergo and require many contrast-enhanced examinations, such as patients with oncologic or cardiovascular diseases. Thus, the

Background. The term “breakthrough reactions” designates repeated hypersensitivity reactions to iodinated contrast media (ICM) despite premedication with glucocorticoids and antihistamines. We aimed to retrospectively evaluate the rate of positive skin test (STs) in our cohort of patients with previous breakthrough reactions to different ICMs. Methods. A series of 35 patients, who experienced at least one breakthrough reaction to ICM and who underwent STs within 6 months from the reaction were studied, and results were compared to a control group of patients with a first hypersensitivity reaction occurred without premedication. Skin prick tests (SPT), intradermal tests (IDT) and patch tests (PT) at different dilutions, with a set of three to four ICM were performed. Results. Of the 35 patients with prior breakthrough reactions, 57% had an immediate reaction (IR) and 43% had a non-immediate reaction (NIR). Patients who experienced the first hypersensitivity IR or NIR, later had one or more breakthrough IR or NIR, respectively. Overall, 29% (10/35) of patients with prior breakthrough reactions resulted positive to STs compared to 57% (16/28) of the control group (p < 0.05). No significant difference in allergy history, age, sex, other clinical / demographic features nor chronic use of ACE-inhibitor, beta-blockers or NSAIDs was observed. Conclusions. This preliminary finding suggests that patients with prior breakthrough reactions have significantly lower immunologically proven ICM reactions (positive STs) if compared to non-breakthrough patients. According to that, a considerable number of breakthrough reactions seems to be non-allergic hypersensitivity reactions or reactions which could be mostly prevented by a proper, well-timed skin testing. Larger prospective studies are needed to confirm these results, with a more careful analysis of patients’ risk factors, a laboratory assessment that includes an in vitro allergy diagnostics, and hopefully a drug provocation test for selected cases.
A. Berti, E. Della-Torre, MR. Yacoub, E. Tombetti, V. Canti, MG. Sabbadini, G. Colombo

Material and methods

Patients. Data of patients who had one or more hypersensitivity reactions to ICM despite pharmacological premedication in our Radiology Department between December 2006 and December 2014 were collected. Patient demographics; risk factors; ICM culprits; signs, symptoms, severity and timing of each index and breakthrough reaction were reported, as suggested by ENDA questionnaire for drug hypersensitivity (15). We also included patients who experienced breakthrough reactions in our Radiology Department, but who experienced the first hypersensitivity reaction to ICM if tested by STs (namely skin prick tests, intradermal tests and patch tests) between 2 and 6 months after the reaction (10).

Since true sensitivity of STs in patients with prior breakthrough reactions are still unknown, we retrospectively analyzed the rate of positive STs performed within 6 months after (the last) breakthrough reaction in these patients and compared this data to a control group that experienced a hypersensitivity reaction to ICM without premedication.

Selection of a safe alternative compound is fundamental and starts from the demonstration of the patient’s sensitization to one or more ICM assessed by skin tests (STs) (7-10).

The reliability of STs in diagnosis of ICM allergy has already been assessed in patients with prior hypersensitivity reaction to ICM (10-14). In particular, ENDA conducted a prospective multicenter study which demonstrated that a diagnosis could be reached in up to 50% of patients with prior hypersensitivity reactions to ICM if tested by STs (namely skin prick tests, intradermal tests and patch tests) between 2 and 6 months after the reaction (10).

As previously described by our group (10), Hypersensitivity reaction were divided according to the time between ICM injection and reaction onset. Immediate reactions (IRs) were defined as those developing within one hour after ICM injection, whereas non-immediate (or delayed-type) reactions (NIRe) as those developing from one hour to one week after contrast media administration (9). Immediate reactions were assessed according to the Ring and Messmer classification from grade 1 to 4 as follow: grade 1 for generalized cutaneous and/or mucocutaneous rash, skin eruption, urticarial, angioedema and pruritis; grade 2 for mild systemic reactions including skin manifestations, abdominal symptoms (nausea, cramping), respiratory symptoms (rhinorrhea, hoarseness, dyspnea), cardiovascular symptoms (tachycardia Δ> 20 / min); grade 3 for life-threatening systemic reactions including abdominal symptoms (vomiting, diarrhea), respiratory symptoms (laryngeal edema, bronchospasm, cyanosis), cardiovascular symptoms (hypotension > 20 mmHg sxs., arrhythmia, shock); and grade 4 for cardiac and/or respiratory arrest (16). Non-immediate reactions were defined as mild when no treatment was required, moderate when the patient responded quickly to an appropriate treatment (e.g. oral glucocorticoid), and severe when the reaction was life-threatening, required hospitalization or resulted in death (9).

Premedication regimen. All the patients were premedicated with the same regimen of corticosteroids and antihistamine before undergoing the radiological procedure, as already described in other study-cohorts (11). Briefly, the premedication regimen used in our center is approved and adopted by the American...
College of Radiology (8): Methylprednisolone (Medrol®) 32 mg by mouth 12 hours and 2 hours before ICM administration and Hydroxyzine Hydrochloride (Atarax®) - 25 mg by mouth 1 hour before ICM administration.

Statistical Analysis. Continuous variables are expressed as average (range minimum-maximum value), unless otherwise specified. Qualitative data were expressed in frequency and percent. Fisher’s exact test and Student’s T test were used for statistical comparison between groups. Differences with P-values below of 0.05 were considered statistically significant.

Results

Patients' features. We identified 58 patients with prior breakthrough hypersensitivity reactions, but 23 did not fulfil the study criteria (STs were performed after 6 months form the last breakthrough reaction). A total of 38 hypersensitivity reactions to ICM despite pharmacological premedication occurred in 35 patients (mean age 58 years, range 26-78). The 57% (20/35) of patients had an index IR, whereas the 43% (15/35) of patients had an index NIR. All index IRs and NIRs were subsequently followed by one or more breakthrough IRs and NIRs respectively (table 1).

Sixteen patients (46%; 8 patients of the IR group and 8 of the NIR group) reported a history of previous hypersensitivity reactions to agents different from ICM. In particular, drug hypersensitivity was the majority of cases (75%), half of which were severe (50%). The 66% (13 patients with IR and 10 with NIR) had a positive history for oncologic diseases, most frequently lymphoma (35%). The 9% (3/35) of patients had chronic obstructive pulmonary disease, the 17% (6/35) had coronary artery disease and the 6% (2/35) had a systemic autoimmune disease.

Clinical features of the 28 patients of the control group, who experienced a hypersensitivity reaction without any premedication, were comparable with the patients of the breakthrough group regarding distribution of background characteristics including age, gender, history of allergic disease, comorbidities, NIRs / IRs distribution, and severity of hypersensitivity reactions (table 1).

ICM used and radiological examinations. Among patients cohort with prior breakthrough reactions, most of radiological examinations of hypersensitivity reaction occurred without pharmacological premedication, called index reaction, were CT scan (33/38); 2 were conventional angiography, 2 were cholangiography and 1 was urography. All the radiological examinations of breakthrough reaction of this group were CT scans. Similarly, all radiological examinations performed in the control group were CT-scans.

Among the cohort of patients with prior breakthrough reactions, the ICM of the index reaction was known in 18/35 patients (51%; table 1 for details). Three out of 35 patients had more than one breakthrough reaction, for a total of 38 breakthrough reactions. In 34 out of 38 breakthrough reactions ICM culprit were known (89% of patients); while in the control group, ICM culprit was known in 100% of cases (table 1 for details).

Hypersensitivity reactions' severity. Among patients of the breakthrough group, IRs were experienced in 20 and NIRs in 15. Of note, each index IR was followed by one or more IRs and each NIR was followed by one or more NIRs. Among index IRs, 45% were assessed as grade I, 20% as grade II, and 35% as grade III, whereas among index NIRs, 87% were graded as mild and 13% as moderate reactions. Among breakthrough IRs, 48% was grade I and 52% grade II and among breakthrough NIRs, only 73% were considered mild and 27% moderate reactions. In the control group, 53% of IRs were assessed as grade I, 29% as grade II and 18% as grade III. Almost three quarters of NIRs were considered mild, 27% moderate and none severe (table 1).

Patients with prior breakthrough reactions have low rate of positive ST. All patients tested presented a histamine wheal ≥ 3 mm. Overall, 29% (10/35) of patients with prior breakthrough reactions had positive STs to one or more ICM tested. Among these 10 patients, 6 had a prior IR and 4 had a prior NIR. Details are reported in table 2 and table 3. In the control group, the rate of positive STs to one or more ICM tested was 57% (16/28). Among these 16 patients, 10 had a prior IR 6 had a prior NIR. The difference between breakthrough and control groups was statistically significant (P < 0.05). There was no difference in STs positive rate comparing each other IR subsets of breakthrough and control group and NIR subsets of breakthrough and control group (p > 0.05 in both comparisons).

In the cohort of patients with prior breakthrough reactions, none of the patients had positive SPT, whereas 9/10 patients had positive IDT (6 IR patients and 3 NIR patients) and one of the NIRs group had also positive PT only (table 2 and 3 for details). The median time interval between the first reaction and skin testing was 5 months (range 2 - 6).

The culprit ICM of the breakthrough reaction (or the last breakthrough reaction if more than one) was known in 33 out of 35 patients, 19 with IRs and 14 with NIRs. The culprit ICM elicited a positive ST in 26% (5/19) of IR patients and in 21% (3/14) of NIR patients. As mentioned, all STs were performed within 6 months from the last breakthrough reaction. The culprit ICM of index reaction (occurred from 6 months to 8 years before STs) of the breakthrough cohort, was known in 51% (18/35) of patients, 10 with IRs and 8 with NIRs. Three of them tested positive to the implicated ICM, 20% (2/10) of IR patients and 13% (1/8) of NIRs. In 2 of the 3 patients of IR group who experienced two breakthrough reactions each, the ICM used of both breakthrough reactions were the same and in one the ICM was unknown (table 2).

In the control group, none of the patients had positive SPT or PT, whereas 16/16 patients had positive IDT (10 IR patients
Table 1 - Clinical features of patients studied.

<table>
<thead>
<tr>
<th></th>
<th>Breakthrough group</th>
<th>Control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Patients</td>
<td>35</td>
<td>28</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>27 (77%)</td>
<td>21 (75%)</td>
</tr>
<tr>
<td>Age, mean (range)</td>
<td>58 (26-78)</td>
<td>60 (28-74)</td>
</tr>
<tr>
<td>Immediate / Non-Immediate Reaction</td>
<td>20/15</td>
<td>17/11</td>
</tr>
<tr>
<td>Allergic history, n (%)</td>
<td>16 (46%)</td>
<td>14 (50%)</td>
</tr>
<tr>
<td>Other drug allergies</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Common inhalants</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Hymenoptera venom</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Gadolinium</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Comorbidities, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oncological disease</td>
<td>23 (66%)</td>
<td>17 (61%)</td>
</tr>
<tr>
<td>Chronic pulmonary disease</td>
<td>3 (9%)</td>
<td>2 (7%)</td>
</tr>
<tr>
<td>Coronary artery diseases</td>
<td>5 (17%)</td>
<td>2 (7%)</td>
</tr>
<tr>
<td>Autoimmune disease</td>
<td>2 (6%)</td>
<td>0</td>
</tr>
<tr>
<td>Chronic use of ACE-I or NSAIDs, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACE inhibitor</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Beta blockers</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ICM of index reaction, n (%)</td>
<td>35</td>
<td>28</td>
</tr>
<tr>
<td>Iopromide (non-ionic monomer)</td>
<td>5 (14%)</td>
<td>9 (32%)</td>
</tr>
<tr>
<td>Iomeprol (non-ionic monomer)</td>
<td>5 (14%)</td>
<td>11 (39%)</td>
</tr>
<tr>
<td>Iodixanol (non-ionic dimer)</td>
<td>4 (11%)</td>
<td>8 (29%)</td>
</tr>
<tr>
<td>Iopamidol (non-ionic monomer)</td>
<td>2 (6%)</td>
<td>0</td>
</tr>
<tr>
<td>Severity of index reaction, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade I</td>
<td>9 (45% of IR)</td>
<td>9 (53% of IR)</td>
</tr>
<tr>
<td>Grade II</td>
<td>4 (20% of IR)</td>
<td>5 (29% of IR)</td>
</tr>
<tr>
<td>Grade III</td>
<td>7 (35% of IR)</td>
<td>3 (18% of IR)</td>
</tr>
<tr>
<td>Grade IV</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mild</td>
<td>13 (87% of NIR)</td>
<td>8 (73% of NIR)</td>
</tr>
<tr>
<td>Moderate</td>
<td>2 (13% of NIR)</td>
<td>3 (27% of NIR)</td>
</tr>
<tr>
<td>Severe</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ICM of breakthrough reaction, n (%)</td>
<td>38</td>
<td>-</td>
</tr>
<tr>
<td>Iopromide (non-ionic monomer)</td>
<td>21 (60%)</td>
<td>-</td>
</tr>
<tr>
<td>Iomeprol (non-ionic monomer)</td>
<td>8 (23%)</td>
<td>-</td>
</tr>
<tr>
<td>Iodixanol (non-ionic dimer)</td>
<td>6 (17%)</td>
<td>-</td>
</tr>
<tr>
<td>Unknown</td>
<td>4 (11%)</td>
<td>-</td>
</tr>
<tr>
<td>Severity of breakthrough reaction, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade I</td>
<td>11 (48%)</td>
<td>-</td>
</tr>
<tr>
<td>Grade II</td>
<td>12 (52%)</td>
<td>-</td>
</tr>
<tr>
<td>Grade III</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Grade IV</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mild</td>
<td>11 (73%)</td>
<td>-</td>
</tr>
<tr>
<td>Moderate</td>
<td>4 (27%)</td>
<td>-</td>
</tr>
<tr>
<td>Severe</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Patients with breakthrough reactions to iodinated contrast media have low incidence of positive skin tests.

No difference was observed in clinical/demographic features or chronic ACE-inhibitor / beta-blockers / NSAIDs use between breakthrough and control groups.

In both groups the rate of chronic use of ACE-inhibitor and/or beta-blockers and/or NSAIDs was more than 30% (table 2).

and 6 NIR patients, table 2-3 for details). The STs positive ICM matched the culprit ICM in 3 patients of the IR group and in 2 patients of the NIR group, respectively. The median time interval between the first reaction and skin testing was 4 months (range 2 - 6).
Table 3 - Skin testing for patient with NIR to ICM.

<table>
<thead>
<tr>
<th>Pt.</th>
<th>Severity</th>
<th>Index reaction</th>
<th>Last breakthrough reaction</th>
<th>Skin test results(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mild</td>
<td>Unknown</td>
<td>Mild</td>
<td>Iomeprol</td>
</tr>
<tr>
<td>2</td>
<td>Mild</td>
<td>Unknown</td>
<td>Mild</td>
<td>Iomeprol</td>
</tr>
<tr>
<td>3</td>
<td>Moderate</td>
<td>Unknown</td>
<td>Moderate</td>
<td>Iopromide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IDT 1:10 Iomeprol (72) and 1:10 Iopromide (72)</td>
</tr>
<tr>
<td>4</td>
<td>Mild</td>
<td>Unknown</td>
<td>Mild</td>
<td>Iopromide</td>
</tr>
<tr>
<td>5</td>
<td>Mild</td>
<td>Unknown</td>
<td>Moderate</td>
<td>Iodixanol</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IDT 1:10 Iodixanol (96)</td>
</tr>
<tr>
<td>7</td>
<td>Mild</td>
<td>Iodixanol</td>
<td>Mild</td>
<td>Iopromide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IDT 1:100 Iopromide (I) and 1:1 Iodixanol (I)</td>
</tr>
<tr>
<td>8</td>
<td>Mild</td>
<td>Iomeprol</td>
<td>Moderate</td>
<td>Iopromide</td>
</tr>
<tr>
<td>9</td>
<td>Mild</td>
<td>Iopromide</td>
<td>Moderate</td>
<td>Iopromide</td>
</tr>
<tr>
<td>10</td>
<td>Moderate</td>
<td>Iomeprol</td>
<td>Mild</td>
<td>Iopromide</td>
</tr>
<tr>
<td>11</td>
<td>Mild</td>
<td>Iopromide</td>
<td>Mild</td>
<td>Iopromide</td>
</tr>
<tr>
<td>12</td>
<td>Mild</td>
<td>Iopromide</td>
<td>Mild</td>
<td>Iopromide</td>
</tr>
<tr>
<td>13</td>
<td>Mild</td>
<td>Iomeprol</td>
<td>Mild</td>
<td>Iopromide</td>
</tr>
<tr>
<td>14</td>
<td>Mild</td>
<td>Unknown</td>
<td>Mild</td>
<td>Unknown PT iodixanol (48)</td>
</tr>
<tr>
<td>15</td>
<td>Mild</td>
<td>Iopromide</td>
<td>Mild</td>
<td>Iopromide</td>
</tr>
</tbody>
</table>

\(^1\)Skin tests included SPTs, IDTs and PTs: only positive results are reported.

Computed tomography (CT), iodinated contrast media (ICM), Non-immediate reaction (NIR), Intradermal test (IDT), Patch test (PT), immediate reading (I), 48 hours reading (48), 72 hours reading (72), 96 hours reading (96).

Table 4 - Clinical/demographic features and ACE-inhibitor / NSAIDs /Beta blockers chronic use in patients with positive ST's results.

<table>
<thead>
<tr>
<th></th>
<th>Breakthrough group with STs +</th>
<th>Control group with STs +</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>57</td>
<td>64</td>
<td>> .05</td>
</tr>
<tr>
<td>Female</td>
<td>(8/10) 80%</td>
<td>(12/16) 75%</td>
<td>> .05</td>
</tr>
<tr>
<td>Allergy history, n (%)</td>
<td>5/10 (50%)</td>
<td>9/16 (56%)</td>
<td>> .05</td>
</tr>
<tr>
<td>Other drug allergies</td>
<td>4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Common inhalants</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Comorbidities, n (%)</td>
<td>8/10 (80%)</td>
<td>11/16 (69%)</td>
<td>> .05</td>
</tr>
<tr>
<td>Oncological disease, n (%)</td>
<td>6/10 (60%)</td>
<td>9/16 (56%)</td>
<td></td>
</tr>
<tr>
<td>Chronic pulmonary disease, n (%)</td>
<td>1/10 (10%)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Coronary artery diseases, n (%)</td>
<td>1/10 (10%)</td>
<td>2/16 (13%)</td>
<td></td>
</tr>
<tr>
<td>Chronic use of ACE-I or NSAIDs, n (%)</td>
<td>4/10 (40%)</td>
<td>6/16 (38%)</td>
<td>> .05</td>
</tr>
<tr>
<td>ACE inhibitor</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NSAIDs</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Beta-blockers</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Patients with breakthrough reactions to iodinated contrast media have low incidence of positive skin tests

4). Among the patients who had prior breakthrough reactions with positive STs (10 patients), 40% chronically used medications potentially exacerbating a ICM hypersensitivity reaction (ACE-inhibitor 2 patients, NSAIDs 1 patient, beta blockers 1 patient). In the control group, 38% (n = 16) of patients with positive STs chronically used these medications (ACE-inhibitor 2 patients, NSAIDs 3 patients, beta blockers 1 patients). There was no statistical difference between the breakthrough and the control group of patients. Results are summarized in table 4.

Furthermore, there was any significant difference in allergy history, age, sex and other demographic features in STs-positive subsets of both groups (table 4).

Discussion

The problem of repeated hypersensitivity reactions to ICM despite premedications, formerly called breakthrough reactions, represent a major issue in clinical setting if a new contrast-enhanced radiological examination is required. From a clinical perspective, the diagnosis by STs of the ICM culprit (if not known) or other cross-reactive ICMs is the prerequisite for selection of an alternative compound and prevention of a possible new reaction (7-10). Overall, the use of STs has not yet been assessed in patients with prior breakthrough reactions (occurred despite premedication), whereas a growing body of literature reported the sensitivity of these testing around 50% for patients who experienced ICM hypersensitivity reaction (10-14).

In the present study we aimed to retrospectively evaluate the rate of positive skin test (STs) in 35 patients with previous ICM breakthrough reactions, and to compare this results to a control group of patients who experienced an ICM hypersensitivity reaction occurred without premedication.

We included only those patients in which STs were performed within 6 months from the last breakthrough reaction, in order to optimize the rate of positive testing. Interestingly, we found that the STs were positive in 29% (10/35) of patient’s cohort with prior breakthrough reactions, equally distributed between IR group and NIR groups, versus 57% (16/28) of the non-breakthrough control group (p < 0.05, table 2 and 3). Of note, the STs rate of the control group was consistent to those already published (10).

Overall, less than one third of patients with prior breakthrough reactions has immunologically proven ICM reactions (with positive STs). A possible explanation to this unexpected result may likely have been the unintentional selection of the population studied. In fact, patients with repeated reactions despite premedication are usually patients who undergo to several contrast-enhanced radiological examination because of an oncologic or cardiovascular disease, unlike the ENDA patients’ cohort. Nevertheless, no significant difference was found in epidemiological and clinical features between the breakthrough patients’ cohort and control group. Similarly, the chronic use of ACE-inhibitor and/or beta-blockers and/or NSAIDs, which may potentially trigger or exacerbate an ICM reaction, was not increased in the breakthrough group (table 4).

However, a deeper reading of the results achieved, evidences that most of the so called “breakthrough reactors” with negative STs are likely patients with non-allergic breakthrough reactions. Overall, 29% of patients are positive at STs for one or more ICM, and only 26% of IR and 21% of NIR patients are ST positive for the breakthrough reaction’s ICM. This suggest that the majority breakthrough reactions are probably non-immunologic reactions, due e.g. to direct histamine release by circulating basophils or even steroid-induced flushing. Our clinical experience supports this view, particularly for the breakthrough IRs. On the other hand, only 20% of IR and 13% of NIR patients are ST positive for the index reaction’s ICM (from 6 months to 8 years before STs), paralleling the data already published by ENDA group for patients tested after 6 months from the hypersensitivity reaction, in which ST positive rate was around 18% for IR and 22% for NIR respectively (10).

On the other hand, breakthrough reactors with positive STs might be patients who experienced hypersensitivity reactions to the same ICM of index reaction despite premedication (in those cases in which ICM was unknown), or patients with multiple ICMs allergy due to cross-reactive compounds.

All these considerations reflect the heterogeneity of the breakthrough reactors’ condition; suggesting that a considerable number of breakthrough reactors are probably patients who experience non-allergic hypersensitivity reactions or patients in which breakthrough reactions could be mostly prevented by a proper skin testing after index reaction. Our analysis is limited by the role of the in vivo tests in breakthrough reactions, thus not including the in vitro diagnostics (as basophil activation test) or triptase levels, which may have contributed to explain the results we achieved, especially for those patients who experienced an IR. Similarly, it would be useful to know if patients with a supposed non-clearly immune-mediated rash had a prior history of cutaneous manifestation as atopic dermatitis, pressure urticaria or dermographism, but these data are missing because of the retrospective nature of our analysis.

Unlike from patients with IR, the lower ST positive rate in breakthrough reactors with NIR is not easy to explain and we can’t offer a possible explanation of the responsible mechanism. Unfortunately, we didn’t use the drug provocative test (DTP) with an alternative ICM, which could help in identification of a safe, alternative compound, especially for patients with NIR (17-20), increasing the diagnostic yield. The usefulness of DTP in contrast media hypersensitivity is a recent acquisition and the procedure needs to be standardized (19).
Other limitations consist of the sample size of the patients’ cohort or the number of ICM tested. We performed the STs with iomeprol, iopromide, and iodoxanol in all patients, since only these 3 ICM were used in our Institute in the last 8 years. A fourth ICM (iopamidol, 2 patients) was added for STs only for those patients who experienced the index reaction in other hospitals, with a known ICM different from the previous three. Although ENDA study group used at least four ICM for STs (10), our control group showed a rate of positive STs performed between 2 and 6 months comparable to that of ENDA study. Finally, we performed STs using also 1:1 ICM dilution, which is not recommended by ENDA because of the risk of false positives (10), albeit several authors already used it with different results (11-14). Since in our experience 1:1 dilution of ICM may be useful if carefully read by the experienced allergist, we performed it in our cohort of patients. Furthermore, the STs rate of patients with prior breakthrough reaction was lower than the control group albeit 1:1 ICM dilutions, and STs rate of control group was not substantially higher compared to those reported by ENDA (10).

Despite these limitations and the heterogeneity of our cohort, we first observed that patients with prior breakthrough reactions have lower immunologically proven ICM reactions (with positive STs) compared to non-breakthrough reactions. Our results reappraise the role of breakthrough reactions; some of those are probably non-allergic hypersensitivity reactions or true allergic reactions that could be prevented by a proper, well-timed diagnostic skin testing. Larger prospective studies are needed to confirm these results, with a more careful analysis of patients’ risk factors, a laboratory assessment that includes an in vitro allergy diagnostics, as for example tryptase levels during acute reaction for patients with IR, and hopefully DTP with an alternative ICM for selected cases, especially those with ST negative NIR.

References

Chronic Idiopathic Urticaria (CIU) affects 1% of the US population (1). There is a reported increase in prevalence of CIU among female groups with the highest birth rates in the US, those with a median age of 35 years (2). However, there is a lack of published data regarding prevalence of urticaria during pregnancy and its association with pregnancy complications and fetal outcomes. Previously, H1 antihistamines were the only approved therapy in the US for CIU and until today are considered first line therapy. However, nearly 50% of patients with CIU are unresponsive to antihistamine therapy alone. Corticosteroids are frequently incorporated in their management. Known pregnancy complications from steroid use include pre-eclampsia, gestational diabetes, primary cleft palate, neonatal adrenal insufficiency and low birth weight (3).

Omalizumab, currently 4th line of therapy, is a pregnancy category B drug recently FDA approved for CIU.

We report a series of four female subjects, between the age of 25 and 28, treated with Omalizumab for antihistamine and steroid resistant urticaria, who became pregnant during therapy. Three of the four patients had a concomitant history of asthma demonstrated by pulmonary function tests, and two had a diagnosis of allergic rhinitis with positive skin testing. All four patients had failed multiple combination regimens that included high doses of first and second generation antihistamines coupled with H2 blockers and a leukotriene antagonist. Three patients were on immunosuppressive therapy with hydroxychloroquine, dapsone or cyclosporine without response. All subjects had received prednisone and two patients required chronic steroid therapy. All patients underwent workup including normal CBC, CMP, TSH and tryptase level. After failing previous regimens they were all started on Omalizumab at a dose of 300 mg subcutaneously (SC) every 28 days. Within the first month of therapy, all patients reported significant improvement of their symptoms demonstrated by lower urticaria index scores, decreased medical utilization and weaning of steroids. Three patients had been on

Summary

The treatment of antihistamine and steroid resistant Chronic Idiopathic Urticaria (CIU) during pregnancy poses a challenge due to teratogenicity of immunosuppressants. Omalizumab is a recently FDA approved therapy for CIU and is classified as pregnancy category B. We present an initial series of subjects treated at a tertiary care center for antihistamine and steroid resistant CIU with omalizumab who became pregnant during therapy.

Key Words

urticaria; pregnancy; Omalizumab

Corresponding author

Cristine Radojicic
9500 Euclid Ave, A90,
Cleveland, OH 44195, USA
Phone: +1 216 986 4000
Fax: +1 216 445 2104
E-mail: radojic@ccf.org

L. CUERO-PARDO1, M. BARCENA-BLANCH2, C. RADOJICIC2
Omalizumab treatment for a year prior to pregnancy, one had been on treatment for only two months. All patients were informed on risks, benefits and previously reported outcomes of Omalizumab therapy for asthma during pregnancy (EXPECT) prior to proceeding with therapy. They were followed monthly, all patients had normal prenatal care, full term deliveries and no pregnancy or fetal complications.

To our knowledge, there are no published randomized controlled studies of Omalizumab in pregnancy. Reproductive studies on Cynomolgus monkeys at SC doses up to 10 times the maximum recommended human dose (75 mg/kg) failed to show harm to the fetus (4). Our reported experience is in agreement with previous reports of the EXPECT trial (5). Omalizumab remains a 4th line therapy for treatment of CIU but its excellent efficacy, symptom resolution and label as a pregnancy category B postulates it as an alternative option in pregnant patients that are unresponsive to antihistamines.

References
Summary
The use of MMF has become standard practice in many solid organ transplant recipients due to its efficacy and favorable risk profile compared to other immunosuppressants. There has been a single case report of successful MMF desensitization. However, this protocol did not follow current Drug practice parameters. We report a successful desensitization to MMF in a double heart-kidney transplant recipient.

Introduction
Mycophenolate mofetil (MMF) has largely replaced azathioprine as the preferred drug in organ transplant recipients, and more recently has also been used as a glucocorticoid-sparing agent for the treatment of several rheumatologic diseases. It selectively inhibits T- and B-lymphocyte proliferation by reversibly inhibiting the enzyme, inosine monophosphate dehydrogenase. This enzyme is crucial to the de-novo synthesis of guanine nucleotides by catalyzing the conversion of inosine monophosphate to guanosine monophosphate. Thus, by inhibiting the synthesis of purine nucleotides, it results in decreased B- and T-lymphocyte proliferation, and decreased antibody production (1).

MMF is usually tolerated well in most patients, with the most common side effects being gastrointestinal symptoms and leukopenia. Unlike hypersensitivity reactions, these adverse effects usually resolve with dose adjustments. Hypersensitivity to MMF is rare (2,3), with only two previous case reports in the literature (4,5). When a patient is suspected of having an IgE mediated hypersensitivity to MMF, and it remains the preferred drug over other immunosuppressants, then desensitization may be a safe alternative. Drug desensitization is the induction of a temporary state of tolerance (6). Drug tolerance is defined as a state in which a patient with a drug allergy will tolerate a drug without an adverse reaction. By inducing tolerance, it modifies an individual’s response to a drug temporarily, and in so doing, allows safe treatment with that drug. Desensitization is indicated where an alternative, non-cross-reacting medication cannot be used or is not equally efficacious. Induction of temporary tolerance can involve both IgE and non-IgE immune mechanisms, and even undefined mechanisms (7). Desensitization involves administering incremental doses of the drug over hours to days. The state of tolerance that results from desensitization is only maintained while the patient is taking the drug. Upon discontinuation of the drug, tolerance is lost within hours to days (7).
Case Report

We report a successful desensitization to MMF in a transplant recipient. A 46-year-old African-American female with a past medical history of systemic lupus erythematosus (SLE) induced dilated cardiomyopathy and end stage renal disease was scheduled for a double cardio-renal transplant at our institution. About 10 years prior to her planned transplant, she was placed on MMF, prednisone and cyclophosphamide during an acute flare of her underlying lupus. After a few days she started to experience pruritus of her lips several minutes after ingestion of MMF. After being on MMF for two weeks, she developed facial hives, pruritus and angioedema within 12 hours of her last dose. She was then advised to stop taking MMF and subsequently noticed complete resolution of her symptoms within 3 days while continuing on prednisone and cyclophosphamide.

Due to her history being concerning for an IgE mediated reaction to MMF, her transplant team consulted our Allergy and Immunology Department to consider a rapid drug desensitization procedure. We reviewed the literature and found two previous case reports (4,5). Upon review, both protocols utilized on the published case reports (4,5), deviated from current drug allergy practice parameters set forth by Solensky et al (7). One of the most noticeable deviations was that the protocol previously developed (4), involved giving incremental doses of MMF over 3 days, instead of several hours.

Table 1 - Mycophenolate Mofetil Oral Desensitization.

<table>
<thead>
<tr>
<th>Step</th>
<th>Time (H:MM)</th>
<th>Dose (mg)</th>
<th>Oral volume (200 mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0:00</td>
<td>0.25</td>
<td>0.00125</td>
</tr>
<tr>
<td>2</td>
<td>0:20</td>
<td>0.5</td>
<td>0.0025</td>
</tr>
<tr>
<td>3</td>
<td>0:40</td>
<td>1</td>
<td>0.005</td>
</tr>
<tr>
<td>4</td>
<td>1:00</td>
<td>2</td>
<td>0.01</td>
</tr>
<tr>
<td>5</td>
<td>1:20</td>
<td>4</td>
<td>0.02</td>
</tr>
<tr>
<td>6</td>
<td>1:40</td>
<td>5</td>
<td>0.025</td>
</tr>
<tr>
<td>7</td>
<td>2:00</td>
<td>16</td>
<td>0.08</td>
</tr>
<tr>
<td>8</td>
<td>2:20</td>
<td>32</td>
<td>0.16</td>
</tr>
<tr>
<td>9</td>
<td>2:40</td>
<td>64</td>
<td>0.32</td>
</tr>
<tr>
<td>10</td>
<td>3:00</td>
<td>125</td>
<td>0.625</td>
</tr>
<tr>
<td>11</td>
<td>3:20</td>
<td>250</td>
<td>1.25</td>
</tr>
<tr>
<td>12</td>
<td>3:40</td>
<td>500</td>
<td>2.5</td>
</tr>
<tr>
<td>Total</td>
<td>3:40</td>
<td>999.75</td>
<td>4.99875</td>
</tr>
</tbody>
</table>

1Mycophenolate solution was prepared via diluting a stock solution of mycophenolate (200 mg/ml) with Ora-Plus until a 4 mg/ml solution was obtained.

In our patient, skin testing to MMF was planned to gain further insight on reactivity and, however the patient had a blunted response to the histamine control. Given the urgency of the situation and inability to interpret our skin tests, we decided to proceed directly with a desensitization procedure. We designed a novel 12-step desensitization protocol (table 1), in accordance with the current drug allergy practice parameters recommendations. Following her back-to-back cardio-renal transplant, the patient was placed on azathioprine, tacrolimus and methylprednisolone, pending her desensitization to MMF.

In an intensive care unit setting, an oral desensitization with MMF was performed with diphenhydramine 25 mg IV and famotidine 20 mg IV given as premedication. Incremental doses were given every twenty minutes, reaching a target dose of 500 mg (cumulative 1000 mg) without adverse reactions. She was then successfully continued on the target dose of MMF 500 mg twice daily and tolerated it well. It was subsequently discontinued on a future hospitalization, four months later, due to concern that it may have contributed to an incidental finding of leucopenia.

She has since been placed on azathioprine and was doing clinically well at her last follow-up, 12 months after her transplant.

Conclusion

The use of MMF has become standard practice in many solid organ transplant recipients due its efficacy and favorable risk profile compared to other immunosuppressants. Although an IgE mediated allergy to MMF is rare, it may be increasingly encountered due to its increasing use. Our protocol can be applied to other such patients to achieve a successful desensitization.

References

An unexpected cause of anaphylaxis: potato

Introduction

It is estimated that 5% of young children are affected by food allergy with increasing prevalence. Food-induced allergic reactions account from diversity of symptoms and disorders including the skin, gastrointestinal and respiratory tracts which can be ascribed to IgE-mediated and non-IgE-mediated mechanisms (1). Foods have a pathogenic role in a subset of children with atopic dermatitis (AD) and asthma (1). Allergy to cow's milk, eggs, and cereal is more widespread in atopic infants and younger children (2). However, it is considered that allergy to potato is uncommon in contrast to above-mentioned foods. As in Western countries, white potato (Solanum tuberosum) is a very common ingredient in the diet of Turkey. Its cooked form is introduced in the child’s diet generally around the age of 4 to 6 months as one of the first solids foods (3). In children, allergy to cooked form has been reported, including both immediate and late severe reactions, and even with anaphylaxis (3,4). In the literature, allergic reaction against to raw potato has been rarely reported in children as some is being immediate and others being late reactions, and it usually results from ingestion. Herein, we report two cases with a background of allergic diseases developed anaphylaxis one with cooked potato and the other one with raw potato.

Case report

Case 1

An 11-months old boy presented to our clinic with flushing and swelling at cheeks and lips, ocular itching and erythema, nasal itching, sneezing and cough. In his history, it was found that raw potato was given to alleviate discomfort during eruption; followed by allergic reaction against raw potato. It was also seen that the parents described presence of atopic derma-
family was counseled about potential allergic disorders such as pollen allergy, allergic rhinitis and asthma.

Case 2

A 3-years old boy presented to our clinic with cough, wheezing and dyspnea over 5-10 days of each month within previous year. It was found that the patient presented to emergency department in all episodes and received inhaler salbutamol therapy during these episodes. The parents described cough, abdominal pain and vomiting were developed after consumption of cooked potato for the first when he was one year old. It was found out that father and grandfather had asthma. No abnormal finding was detected in the physical examination. Laboratory test revealed absolute eosinophil count of 540/mm³, percent eosinophil of 4.5%, total IgE of 80 IU and serum potato specific IgE 125 kU/L. We applied a test panel with aeroallergens and food allergens including: Dermatophagoides pteronyssinus, Dermatophagoides farinae, Alternaria alternata, cow’s milk, walnuts, hazelnuts, peanuts, sesame seeds, wheat, egg whites, tuna fish, soybean bean and histamine (10 mg/ml of histamine phosphate) as positive and 0.9% sterile saline as negative controls. Standardized extracts (Stallergenes; Antony, France) were used, and SPTs were evaluated 15 min after application and were considered positive if the mean wheal diameter was ≥ 3 mm compared with the negative control. As a result, we found SPT positivity against walnut 6 x 6 mm and egg white 8 x 7 mm. In prick-to-prick test using raw potato, the patient was found to be sensitive against raw potato 10 x 12 mm, histamine 5 x 6 mm (figure 1). In the provocation test using potato, flushing and induration was detected after contact of raw potato to lips (figure 2). Egg, walnut and raw potato was eliminated from his diet. No latex allergy was detected.

Figure 1 - Positive results to raw potato (3) and positive control (histamine, 2) in prick by prick. The tests with latex (4) and physiologic saline (1) are negative.

Figure 2 - Positive raw potato challenge (labial and face edema, erythema).
An unexpected cause of anaphylaxis: potato

Discussion

The vast majority of anaphylaxis cases in children are related with food, especially cow milk and eggs. Although potato is widely consumed in our region as in Europe, adverse reactions to potato are unusual. Both cooked and raw form of potato can cause allergies. In adults, allergy to raw potato is generally considered as a manifestation of oral allergy syndrome in patients with pollen allergy. It is particularly observed in housewives, who experience itching, rhinoconjunctivitis, and, in some cases, asthma or even anaphylaxis during the peeling of potatoes (8). However, allergy to cooked potato have only been reported in children so far and it has been reported that allergy to cooked potato may involve both immediate and late severe reactions, and even anaphylaxis (3,4,9,10). Potato related anaphylaxis is rare. Monti et al. (11) reported an 8-month-old patient developing anaphylaxis with cooked potato, while Beausole et al. (12) described a 4 year old patient developing anaphylaxis with raw potato. In the study by De Swert et al. (3) 36 cases with potato allergy were evaluated, three of which were admitted with clinical features of anaphylaxis. Symptoms of anaphylaxis were observed after contact to raw and cooked potato in our cases.

In a previous study declared that AD was the most common clinical feature present with potato allergy (3,9,13). De Swert et al. (5) evaluated children with potato allergy, all patients had atopic dermatitis. In another study by De Swert et al. (10) it was found that all subjects apart from one with potato allergy had eczema. In the study by Majamaa et al. (4) in which skin testing, oral challenge responses to potato and the occurrence of immunoglobulin E antibodies to patatin (Sol t 1) were evaluated in infants, it was found that all patients had atopic dermatitis. In another study, it was reported that there was AD in 33 of 40 patients.

Respiratory symptoms (wheeze / rhinitis) were the second most common symptom. Foods rarely cause respiratory symptoms. In the study by De Swert et al. (3) it was found that there was wheezing / rhinitis in 40% of those patients with potato allergy. A case report by Quirce et al. (8) reported two housewives in whom asthma findings developed after handling raw potato. Thus far, five potato allergens have been defined; the glycoprotein “patatin” (Sol-t-1) is the most important of these that shows a significant homology with a latex allergen, leading to the possibility of cross-reaction (4,14,15). Patatin is considered to be a heat-labile allergen. In addition, 4 IgE-binding potato proteins (cathepsin D-, cysteine-, and aspartic protease inhibitors) were identified and designated as Sol t 2, Sol t 3.0101, Sol t 3.0102, and Sol t 4, belonging to the family of soybean trypsin inhibitors (Kunitz type) by Seppälä et al. (14). Although patatin is considered to be a heat-labile allergen, it has been shown that its IgE interaction is strongly influenced by other potato proteins in terms of heat lability (16). The development of symptoms in

Figure 3 - Positive results to raw potato (4), cooked potato (3) and positive control (histamine, 2) in prick by prick. The tests with latex (5) and physiologic saline (1) are negative.

Figure 4 - Positive raw potato challenge (labial edema, erythema and induration).
some patients with only raw potato or unprocessed potato or after oral intake, can be attributed to heat-labile potato proteins, which are unstable in the presence of digestive enzymes and gastric acid or lose their allergenic properties after cooking (3). Reaction with raw potato is observed in the presence of a reaction against patatin usually in the form of erythema and urticaria. There are different allergens expressing cross-reaction with potato. Potato is one of the foods implicated in the latex-fruit syndrome, and it has been questioned whether latex sensitization precedes or follows the onset of food allergy (14,15). Latex sensitivity was not detected in our patient. Others important allergens include birch pollen and grass pollen. In our patient, follow-up was scheduled for the development of seasonal allergic rhinitis and pollen sensitivity.

Here, we aimed to emphasize potato allergy, a rare entity, and to remind potential disorders that could develop with or after potato allergy.

References

A. TAMMARO1, G. CORTESI1, F. PIGLIACELLI1, FR. PARISELLA3, F. PERSECHINO2, G. DE MARCO1, S. PERSECHINO1

Heavy metal and tattoo: an allergy and legislative problem

1Dermatology Unit, NESMOS Department, S. Andrea Hospital, University of Rome “Sapienza”
2Department of Dermatology, University of Modena and Reggio Emilia
3Medical student, Faculty of Medicine, Towson University, Towson City, Maryland (USA)

Corresponding author
Antonella Tammaro
Dermatology Unit, NESMOS Department
S. Andrea Hospital,
University of Rome “Sapienza”
Via di Grottarossa, 1035
00189 Rome (RM), Italy
Phone: +39 06 3377 5907
Fax: +39 06 3377 5378
E-mail: tammaroantonella@gmail.com

It is estimated that more than 24% of American adults have one or more tattoos, and the practice is gaining social acceptability and is becoming more popular also in Italy, especially among adolescents (1).

In the last few years, the demand for new colors has increased. People demand for brighter colors and different shades. Pigments have been enriched with components to increase the brightness, like azopigment and heavy metal for new shades. Heavy metal toxicity has proven to be a major threat, and there are several health risks associated with it. The toxic effects of these metals, even though they do not have any biological role, remain present in some or the other form harmful for the human body and its proper functioning. They sometimes act as a pseudo element of the body, while at certain times they may even interfere with metabolic processes. Some metals get accumulated in the body and food chain, exhibiting a chronic nature. Various public health measures have been undertaken to control, prevent and treat metal toxicity occurring at various levels, such as occupational exposure, accidents and environmental factors. Metal toxicity depends upon the absorbed dose, the route of exposure and duration of exposure, i.e. acute or chronic. This can lead to various disorders and can also result in excessive damage due to oxidative stress induced by free radical formation (2).

As regards tattoo pigment, the legislation is not clear. In Italy there are different regional legislations.

Copper (Cu) is a vital mineral essential for many biological processes. The vast majority of all Cu in healthy humans is associated with enzyme prosthetic groups or bound to proteins. Cu homeostasis is tightly regulated through a complex system of Cu transporters and chaperone proteins. Excess or toxicity of Cu, which is associated with the pathogenesis of hepatic disorder, neurodegenerative changes and other disease conditions, can occur when Cu homeostasis is disrupted. The capacity to initiate...
oxidative damage is most commonly attributed to Cu-induced cellular toxicity. Recently, altered cellular events, including lipid metabolism, gene expression, alpha-synuclein aggregation, activation of acidic sphingomyelinase and release of ceramide, and temporal and spatial distribution of Cu in hepatocytes, as well as Cu-protein interaction in the nerve system, have been suggested to play a role in Cu toxicity (3).

Cu occurring also in cosmetics may undergo retention, and act directly in the skin or be absorbed through the skin into the blood, accumulate in the body and exert toxic effects in various organs. Some cases of topical (mainly allergic contact dermatitis) and systemic effects owing to exposure to metals present in cosmetics have been reported.

We presented a clinical case of a 23 years old man presented to our department with a 2-week history of pruritus, erythema and papules on legs, arms and trunk. These lesions developed 2 months after tattooing (figure 1). General physical examination was normal.

The patch test was performed using the standard series SIDA-PA. It resulted negative. So, we decided to execute the special series F.I.R.M.A. for tattoo (copper sulphate 1% in water, dimethylaminoazobenzene-p 1%, aminoazotoluene-o 1%, blue scattered 3 1%, blue scattered 124 1%, yellow scattered 3 1%, orange scattered 3 1%, red scattered 1 1%, gentian violet 2%, cadmium chloride 1% in water, nickel sulphate 5%, iron chloride 2% in water, potassium dichromate 0.5%, chromium trichloride 2%, aminoazobenzene-p 0.25%, cobalt chloride 1%, aluminium chloride 2%, titanium dioxide 0.1%, zinc 2.5%, mercury chloride 0.05% in water, kathon cg 0.01% in water, phenol 0.5%, ethylenediamine hydrochloride 1%, phenylenediamine base-p 1%, formaldehyde 1% in water, phthalic anhydride 1%, rosin 20%, dibutyl phthalate 5%, hexamethylenetetramine 1%, benzophenone 5%).

Our patient showed positive patch test reaction to Copper (++ positive) and Disperse Blu (+ positive) (figure 2).

We proposed to our patient to remove the tattoo with laser therapy, but he refused it. So, we performed local infiltration of cortisone for four weeks, with temporary resolution of clinical manifestation.

The tattoo phenomenon is expanding rapidly, and involves mainly young people between 16 and 25 years. Great attention must be put to the pigments used. There are new substances, often little known, and allergic reactions to these pigments are increasing rapidly. Deciding to inject a pigment on your skin deserves great attention, even more so choosing the pigments to be used. We recommend that you always perform a patch test before getting a tattoo. (4,5).
References

Allergy in urban elderly population living in Campania region (Southern Italy). A multicenter study

On behalf of Italian Association of Hospital and Territorial Allergologists (AAIITO - Campania Region)

Summary
Given the increasing life expectancy observed in Western countries, there is a marked interest to know more about how aging could influence respiratory health. The aim of our study was to assess the prevalence, clinical characteristics and age of onset of allergic sensitization and clinical symptoms in a sample of atopic elders living in Campania region area (Southern Italy). Fourteen Allergy units or Centres examined a total of 462 patients. In this context 215 (46.53%) had positive skin prick tests (SPTs) to at least one allergen and were diagnosed with respiratory allergy. Parietaria represents the most common sensitizing agent in elders living in Campania region, followed by dust mites, grass pollen and Olea europaea. A relatively high percentage of atopic subjects suffered from respiratory symptoms at a fairly advanced age, namely 8.3% at 60-64 years, 10.2% at 65-70 and 5.7% at > 70 years. In conclusion, the prevalence and clinical significance of airway allergic sensitization in the elderly living in Campania region is more significant than expected in latter stages of life. Physicians should not neglect the role of atopy as a risk factor for the onset of allergic respiratory symptoms even in elderly patients.
To the Editor

Given the increasing life expectancy observed in most Western countries, there is a marked interest to know more about how aging could influence respiratory health. Aging influences not only the respiratory function but also the immune response to infectious agents and the environment (allergens and air pollutants) (1). It has been shown that asthma and allergic diseases are not uncommon in the elderly, and the prevalence of asthma appears to be increasing over the past decades (2). Although allergens and the allergic sensitivity have a lesser impact compared to younger populations, allergy remains a relevant problem in the elderly (3). Furthermore, multi-morbidity is certainly the most important problem related to old age, being associated with disability, institutionalization, poorer quality of life and higher frequency of adverse events related to multiple concomitant treatments, and ultimately death (4). Other aspects on the management of respiratory allergic disorders in the elderly compared to other age groups were also described (5-19). Since Campania region is inhabited by the youngest population in Italy, studies on airway allergic sensitization have been carried out mainly in children and adults. The aim of our study was to assess the prevalence, clinical characteristics and age of onset of allergic sensitization and clinical symptoms in a sample of atopic elderly subjects living in the Campania region (Southern Italy).

Fourteen Allergy units or Centres belonging to the Italian Association of Hospital and Territorial Allergologists (AAITO - Campania region), uniformly distributed over the whole territory of Campania region (13.595 Km², 6.074.882 inhabitants) participated in this cross-sectional study. The same protocol was shared by all participating centers; each Centre collected the results of allergy consultations of consecutive outpatients, aged > 60 years, referred for suspected or current respiratory allergy (asthma and/or rhinitis). Patient enrollment started on January 1 and ended on June 30, 2014.

A case report form (CRF) specifically designed for this study was completed during the screening consultation of each patient. The standardized form reported: demographic data, type and duration of respiratory symptoms, pet ownership, results of the skin prick tests (SPTs), age of onset of respiratory symptoms. The diagnosis of respiratory allergy has been carried out according to the International Guidelines (20,21).

The commercial allergen extracts used for screening SPTs were provided by ALK-Abello Group (Milan, Italy). A standard panel of allergens was used, including Dermatophagoides pteronyssinus and D. farinae, Alternaria alternata, Cladosporium herbarum, cat and dog dander, Parietaria, Grass pollen mix, Artemisia vulgaris, Olea europaea, Betula pendula, Cupressus sempervirens and Corylus avellana. This allergen panel covers the main causative agents of respiratory allergy in Campania region. Positive (10 mg/ml histamine HCl) and negative (saline solution in glycerine-phenol solution) controls were used. SPTs were performed and interpreted according to International Guidelines (22); results were read after 15 minutes and expressed as the mean of the major wheal diameter plus its orthogonal. A skin reaction of 3 mm or greater was considered positive. Wheal profiles were outlined using a fine-point marking pen and transferred by adhesive tape onto the patient’s form.

Patients with chronic infectious diseases, malignancies or dysmetabolic diseases, severe cutaneous disorders, negative skin reaction to histamine, or undergoing treatment with drugs interfering with skin response were excluded from the study (23,24). A total of 462 patients were examined (females 291, 62.9%; males 171, 37.01%). Two hundred and fifteen subjects (46.53%) had positive SPTs to at least one allergen and were diagnosed with respiratory allergy, the remaining 247 (53.46%) were SPTs-negative. Female sex was predominant either in atopic (females 135, 29.2%; males 80, 17.3%) and non-atopic elders (females 156, 33.8%; males 91, 19.7%). Parietaria represents the most common sensitizing agent in elderly allergic patients living in Campania region, followed by dust mites, grass pollen and Olea europaea (figure 1), irrespective of age of symptom onset (< 50 or > 50 years) (figure 2). This data differs from previous reports on children and adults living in Campania region and Naples area, where the most common sensitizing agents were dust mites followed by Parietaria, Grass pollen and Olea europaea (25-28).

Although a significant proportion of allergic elders reported the first onset of respiratory symptoms under 40 years, a high proportion of atopic subjects suffered from respiratory symptoms first occurring in late adulthood namely 8.3% at 60-64 years, 10.2% at 65-70 years and 5.7% > 70 years (figure 3). More than a half of these elders experienced a late onset respiratory allergy, showing that late sensitization occurs more frequently than previously thought. Only a small percentage of these subjects suffered from allergic respiratory symptoms during adolescence. As expected, individuals with non-allergic respiratory symptoms are less commonly seen in younger age compared to older age (figure 3).

In conclusion, our data show that the prevalence and clinical importance of airway allergic sensitization in the elderly living in Campania region is more significant than expected, especially in late adulthood. This finding should be taken into account by clinicians and allergologists, who should not neglect the role of atopy as a risk factor for the onset of allergic respiratory symptoms even in the elderly.

Authorship

All authors contributed equally in the writing and revision of the manuscript.
Figure 1 - Percentages of all elderly patients sensitized to common aero-allergens.

Figure 2 - Percentages of elderly patients sensitized to common aero-allergens according to the time of onset of symptoms (before or after 50 years of age).
Allergy in urban elderly population living in Campania region (Southern Italy). A multicenter study

Conflict of interest and financial resources

All authors declare that they have no conflict of interest and that the study has been carried out without any financial support.

References