Hemophagocytic Lymphohistiocytosis mimics many common conditions: case series and review of literature

A.T. Akenroye¹,², N. Madan¹,², F. Mohammadi³,⁴, J. Leider¹,²

Summary

Introduction. Hemophagocytic lymphohistiocytosis (HLH), a rare but potentially fatal disease, is characterized by excessive immune activation and cytokine release which stimulates bone marrow macrophages to engulf hematopoietic cells. HLH could be secondary to infections: viral, fungal, and bacterial; malignancies and autoimmune diseases. The diagnosis of HLH is usually delayed due to the presence of non-specific symptoms at presentation. This delay contributes to increased mortality. Cases and review. We present the case of 4 patients who presented with subjective fevers and extreme fatigue. Patients all had systemic inflammatory response syndrome (SIRS). All patients were initially managed as in sepsis from an underlying infection. All unfortunately progressed to multiple organs dysfunction and died. The underlying causes for HLH in the patients were considered to be: HIV/AIDS, T cell lymphoma, histoplasmosis and juvenile rheumatoid arthritis. We have also included a brief review of the literature on HLH highlighting the treatment and outcomes of patients in case series; and the many conditions which can trigger HLH. Conclusion. Patients with HLH usually share various non-specific symptoms, such as fever and malaise, with patients across a wide spectrum of conditions: from bacterial sepsis to malignancies. Since early suspicion and diagnosis is critical to prompt therapy and improved mortality, including HLH as a possible cause of fever particularly in patients with prolonged fever of unknown origin and cytopenias will be crucial.

Introduction

Hemophagocytic lymphohistiocytosis (HLH), a rare but potentially fatal disease, is characterized by persistent immune activation and cytokine release which stimulates bone marrow (BM) macrophages to engulf hematopoietic cells. Over the past three decades there has been extensive research into the causes of HLH, its diagnosis, and its optimal management. This, in addition to the publication of the HLH-1994 and HLH-2004 diagnostic criteria and treatment protocols has led to an improvement in the prognosis of HLH (1). Since the publication of the HLH-94 protocol, mortality in primary HLH has been shown to improve from about 100% in a few months to about 50% over a median follow-up of six years (2). However, the prognosis of secondary HLH, which is more common in adults, remains grave (3). HLH could be primary or secondary (1,4). Primary or familial hemophagocytic lymphohistiocytosis (FHL) has underlying genetic mutations inherited in either an autosomal recessive pattern (perforin [PRF1], MUNC13-4, syntaxin 11 [STX11], STXBP2, and RAB27A genes) or X-linked pattern (SH2D1A

Key words

Hemophagocytosis; hemophagocytic lymphohistiocytosis; macrophage activation syndrome; systemic inflammatory response syndrome; T-cell dysregulation; immune regulation

Corresponding author:
Ayobami Akenroye
Department of Medicine, Jacobi Medical Center, Building 1, 3N21, 1400 Morris Park Avenue Bronx, NY 10461, USA
Phone: 718 918 7768
Fax: 718 918 7460
E-mail: ayobami.akenroye@post.harvard.edu
Bone marrow biopsy (showing macrophage engulfing led to the diagnosis of HLH. 3 of the 4 had hemophagocytes in and worsening cytopenias triggered bone marrow aspiration that peaked at 55,269 and 87,708 ng/ml respectively. Elevated ferritin greater than 1000 ng/ml in all patients, and in Patients 1 and 4 ferritin levels were subsequently checked which was remarkably
ruses, fungi and parasites given the hospital’s location in an area were explored with an extensive workup for atypical bacteria, vi persistent fevers, despite antibacterial regimen, and chronicity of aerogenes bacteremia weeks after the diagnosis of HLH. Due to similarities between their clinical presentations and features to facilitate increased suspicion and prompt diagnosis. Finally, we include a concise review of literature emphasizing common conditions associated with sHLH and outcomes of the patients reported.

Methods

Case Series: We present briefly a summary of the clinical course of four adult patients.

Review of the Literature: Using the search terms “lymphohistocytosis,” “hemophagocytosis,” “HLH,” “MAS,” alone and in all combinations, we identified reports of HLH in PubMed from 2004 through March 2015. We excluded case reports of single patients and included only case series of adult patients.

Case series

All four patients (table 1), aged 20-60 yrs, initially presented with subjective fevers and extreme fatigue. 3 of the 4 were otherwise healthy patients with no significant comorbidity prior to current illness. Patient 1 had underlying HIV on highly active antiretroviral therapy (most recent CD4: 218, viral load < 20 copies/ml). On presentation, 3 of these 4 patients met SIRS criteria, most commonly being febrile and tachycardic and/or hypotensive. All were anemic and thrombocytopenic. Patient 1 was also leukopenic. All of these patients were initially treated with broad-spectrum empiric antibiotics for presumed sepsis although multiple bacterial cultures subsequently returned negative in all of them except in Patient 3, who later went on to develop Enterobacter aerogenes bacteremia weeks after the diagnosis of HLH. Due to persistent fevers, despite antibacterial regimen, and chronicity of symptoms, other etiology such as HIV/AIDS and tuberculosis were explored with an extensive workup for atypical bacteria, viruses, fungi and parasites given the hospital’s location in an area with high incidence of HIV and large immigrant population. Ferritin levels were subsequently checked which was remarkably greater than 1000 ng/ml in all patients, and in Patients 1 and 4 peaked at 55,269 and 87,708 ng/ml respectively. Elevated ferritin and worsening cytopenias triggered bone marrow aspiration that led to the diagnosis of HLH. 3 of the 4 had hemophagocytes in the bone marrow but all met criteria for HLH as defined in the HLH-2004 guidelines. The underlying disease potentially causing HLH was later considered to be HIV/AIDS in Patient 1, hepatitisplenic T-cell lymphoma in Patient 2, and histoplasmosis in Patient 3. In Patient 4, who was 20 years old at time of diagnosis, the underlying etiology was considered to be juvenile rheumatoid arthritis. A few months after Patient 4 died, however, brother presented with similar illness. Genetic testing was however not pursued as per family’s wishes. Patients 1 and 2 both received 1 cycle of chemotherapy. Patients 3 and 4 were considered too sick at the time of HLH diagnosis with the risk of chemotherapy outweighing the perceived benefit. Patient 1, who was HIV-positive, initially showed improvement in clinical status and ferritin level dropped significantly by 75% while platelet count and leucopenia improved within the first 2 weeks of treatment. Patient however defaulted and was readmitted about 3 months after HLH diagnosis with herpes encephalitis. HLH relapsed and patient progressed to multi-organ failure (MODS) within 4 months of diagnosis. Patient 2 however continued to deteriorate despite chemotherapy. He progressed to multi-organ failure within 8 weeks of diagnosis. Patient 3 was initially placed on empirical anti-tuberculous regimen due to immigration from a tuberculosis-endemic area, and the presence of hilar lymphadenopathy and apical nodules on chest radiography. Repeated acid-fast bacilli stain of bronchial washings and mycology cultures of bone marrow biopsy specimens were however negative. Computed tomography imaging of the chest however revealed widespread granulomas: including at the apices and bases of the right lung with suggestion of histoplasmosis. Patient was placed on fluconazole. Patient 4 received plasmapheresis and pulsed steroids. Cytopenias and inflammatory markers continued to worsen in both patient 3 and 4. Fever initially resolved in both patients but both developed disseminated intravascular coagulation shortly after treatment was started with consequent fatality.

Figure 1 - Bone marrow biopsy (showing macrophage engulfing hematopoietic cells).
Table 1 - Demographic characteristics, clinical manifestations, laboratory results, and clinical outcomes of the 4 patients with hemophagocytic lymphohistiocytosis.

<table>
<thead>
<tr>
<th>Patient</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>45</td>
<td>39</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>Gender</td>
<td>female</td>
<td>male</td>
<td>male</td>
<td>male</td>
</tr>
<tr>
<td>Duration of illness prior to presentation</td>
<td>2 weeks</td>
<td>2 days</td>
<td>1 month</td>
<td>3 months</td>
</tr>
</tbody>
</table>

HLH Diagnostic criteria

1. Fever (> 38.5 °C):

2. Splenomegaly

3. Cytopenia (affecting ≥ 2 of 3 lineages in peripheral blood)

4. Neutropenia, absolute neutrophil count < 1000/L

5. Anemia, Hb < 9g/dL

6. Thrombocytopenia, Platelet < 100/L

7. Hypertriglyceridemia, TG (fasting ≥ 265 mg/dL) or hypofibrinogenemia, FBRN (≤ 150 mg/dL)

8. Low or absent NK cells activity

9. Hyperferritinemia (≥ 500 µg/L)

10. High levels of sCD25, a.k.a IL-2Rα (≥ 2400 U/mL)

11. Hemophagocytosis in the bone marrow, spleen or lymph nodes

Initial presentation

Tachycardia (HR > 100)

Tachypnea (RR > 20)

Other features

Lymphadenopathy

Jaundice, hepatomegaly

Mediastinal and hilar lymphadenopathy

Lymphadenopathy, skin rash, altered mental status

Underlying and Associated diseases

HIV/AIDS

T cell lymphoma

Granulomatous disease likely Histoplasmosis

MAI pneumonia, juvenile rheumatoid arthritis

Other Laboratory results

LDH (U/L)

564

2354

660

2769

ALP (U/L); initial

238

295

145

113

ALP (U/L); peak

2719

563

358

1049

ANA panel

-

-

-

-

EBV IgM or IgG

+: IgG

+: IgG

no

+: IgM

CMV IgM or IgG

+: IgG

+: IgM and IgG

+: IgG

not tested

Treatment regimen

HLH-2004

hyper CVAD

ICE

ESHAP

RIPE

pulsed steroids and plasmapheresis

Clinical course and outcome

DIC

-

-

-

+

Cause of death

Multi-organ failure

Multi-organ failure

Multi-organ failure

Diffuse cerebral edema and SAH

Survival (days): from diagnosis of HLH

147

54

79

27

MAI: Mycobacterium Avium Intracellular; ALP: alkaline phosphatase; DIC: disseminated intravascular coagulation; Hyper CVAD: Cyclophosphamide, Vincristine, Adriamycin, Dexamethasone; ICE: Ifosfamide, Carboplatin, Etoposide; ESHAP: Etoposide, methylprednisone, Ara-C (cytarabine); RIPE: Rifampin, Isoniazid, Pyrazinamide, Ethambutol; SAH: subarachnoid hemorrhage; Hb: hemoglobin; HIV: Human immunodeficiency virus infection; IVIG: intravenous immunoglobulin; LDH: lactate dehydrogenase.
Case reviews and associated diseases

35 case series which included at least 2 adult patients were identified (table 2) (16-43,44,45,14,46-49). Table 2 shows the details of these included case reviews, including treatment regimen and patient outcomes. These case series included a range of 2 to 52 adult patients. Any condition that can trigger an inflammatory reaction, infectious or non-infectious, can cause HLH (table 3). (50-54) HLH-2004 (or -94) protocol was used in less than half of the cases. However, other chemotherapeutic regimen, such as Cyclophosphamide-Adriamycin-Vincristine-Prednisone (CHOP) were used. This could be due to practice variations and providers experience using certain regimen, or as was in our case, the frailty of the patients such that the patients were considered too weak to tolerate the chemotherapy regimen recommended. Multiple other therapies directed at the underlying trigger for HLH were used. These included rituximab in most cases where EBV was suspected, plasmapheresis, IVIG, pulsed steroids and antiviral agents. Some patients also had stem cell transplantation (SCT). Mortality ranged from 0 to a 100% over the time period these patients were followed. Mode was 100% mortality and mean was 67%. Remarkably, patients who had SCT had improved survival. Time to death ranged from 5 hours after diagnosis to a patient who was still alive 15 years after SCT for FHL.

Table 2 - Summary of the case series included in review.

<table>
<thead>
<tr>
<th>Article</th>
<th>Number of patients reported</th>
<th>Suspected etiology of HLH</th>
<th>Chemotherapeutic regimen and dosage; Adjunct therapy</th>
<th>Mortality rate if reported</th>
<th>Time to death if reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Park et al⁴</td>
<td>23</td>
<td>EBV, Hepatitis A</td>
<td>HLH-94 or 2004 (dexamethasone, etoposide, and cyclosporine) protocol; corticosteroids, cyclosporine; HSCT</td>
<td>74% in 6 months</td>
<td>Median: 41 days</td>
</tr>
<tr>
<td>Tseng et al³</td>
<td>96</td>
<td>Viral infections: e.g. CMV, mycobacterial, bacterial: e.g. Aeromonas, and fungi: e.g. cryptococcus; Nosocomial- e.g. burkholderia). Still’s disease, SLE, livedoid vasculitis, Sjogren’s syndrome, and psoriasis. Hematology / oncology disorders</td>
<td>IVIG, corticosteroids, etoposide</td>
<td>63% 30-day mortality</td>
<td>-</td>
</tr>
<tr>
<td>Sieni E et al⁶</td>
<td>11</td>
<td>FHL; Infectious mononucleosis-like illness, Non-Hodgkins lymphoma, neurosarcoïd, Herpes</td>
<td>HLH-94 or HLH-2004 protocols; autologous or allogeneic SCT</td>
<td>64% within 15 years.</td>
<td>ranged from early progressive death shortly after diagnosis -to 10 yrs. 1 patient identified as ‘cured’ post-SCT</td>
</tr>
<tr>
<td>Abe et al¹⁰</td>
<td>5</td>
<td>Primary EBV; EBV reactivation</td>
<td>chemotherapy with or without etoposide; plasmapheresis (for patient with severe symptoms)</td>
<td>40% mortality over 30 months</td>
<td>-</td>
</tr>
<tr>
<td>Argyraki et al¹⁹</td>
<td>3</td>
<td>EBV; MSSA-Infec tive endocarditis</td>
<td>corticosteroids, IVIG; intravenous cloxacillin for MSSA endocarditis</td>
<td>0%. All patients alive at 12 months post-diagnosis</td>
<td>-</td>
</tr>
<tr>
<td>Ben Dhaou Hmaidi et al²⁰</td>
<td>4</td>
<td>Adult-onset Still’s disease; Sjogren syndrome; severe sepsis</td>
<td>corticosteroids; other immunosuppressant therapy</td>
<td>50%</td>
<td>unclear</td>
</tr>
<tr>
<td>Berry et al²¹</td>
<td>2</td>
<td>EBV infection</td>
<td>IVIG, corticosteroids; antivirals (famciclovir, acyclovir)</td>
<td>100% within a week of admission</td>
<td>5 days</td>
</tr>
</tbody>
</table>

Segue...
<table>
<thead>
<tr>
<th>Article</th>
<th>Number of patients reported</th>
<th>Suspected etiology of HLH</th>
<th>Chemotherapeutic regimen and dosage; Adjunct therapy</th>
<th>Mortality rate if reported</th>
<th>Time to death if reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Besset et al23</td>
<td>9</td>
<td>not reported</td>
<td>etoposide-containing regimen (specifics unknown)</td>
<td>33% died in ICU; 5 (56%) died in hosp</td>
<td>mean ICU LOS: 7 days; mean LOS: 21 days</td>
</tr>
<tr>
<td>Bohne et al23</td>
<td>2</td>
<td>EBV; Influenza A/H1N1 infection, underlying XLP-1 (SH2D1A) mutation; cerebral aspergillosis</td>
<td>HLH-2004 + rituximab</td>
<td>100%</td>
<td>Death shortly after diagnosis despite treatment</td>
</tr>
<tr>
<td>Buyse et al24</td>
<td>56</td>
<td>Hematology/oncology disorders (Castleman’s dx, B-cell lymphoma, other); Infections: non-viral and viral; 68% of patients had underlying immune-deficiencies</td>
<td>Etoposide, IVIG, corticosteroids</td>
<td>52% while in the hospital</td>
<td>(median hospital LOS: 23.5 [11.2-41.7] days)</td>
</tr>
<tr>
<td>Chellapandi-\textdagger;an et al25</td>
<td>42</td>
<td>EBV</td>
<td>HLH-2004 + rituximab; IVIG; antivirals (ganciclovir, acyclovir); allogeneic SCT</td>
<td>38% died within 900 days</td>
<td>-</td>
</tr>
<tr>
<td>Fox et al27</td>
<td>3</td>
<td>EBV; Hodgkins Lymphoma</td>
<td>-IVIG, rituximab, ganciclovir; immunosuppressant: cyclosporin A, cyclophosphamide; etoposide</td>
<td>67% within 8 weeks of follow up</td>
<td>-</td>
</tr>
<tr>
<td>Fukunaga et al28</td>
<td>2</td>
<td>malignancy</td>
<td>low-dose etoposide and vincristine plus prednisolone</td>
<td>0%</td>
<td>still alive 1008 and 232 days after transplantation</td>
</tr>
<tr>
<td>Gold et al29</td>
<td>2</td>
<td>Rheumatoid arthritis.</td>
<td>corticosteroid, cyclophosphamide, etanercept, and plasmapheresis; intrathecal methotrexate.</td>
<td>50% within 90-day follow up</td>
<td>24 days</td>
</tr>
<tr>
<td>Hu et al30</td>
<td>15</td>
<td>Infection- MRSA, CMV, EBV; Autoimmune disease; Malignant lymphoma</td>
<td>COP (HLH-2004 protocol used as salvage therapy in 2 patients); allogeneic-HSCT in a patient with lymphoma</td>
<td>33% at 1-year</td>
<td>-</td>
</tr>
<tr>
<td>Kelesidis et al31</td>
<td>4</td>
<td>EBV reactivation, Chronic Granulomatous Disease</td>
<td>HLH-2004+rituximab; Ganciclovir, IVIG, cyclosporine</td>
<td>75%</td>
<td>not stated</td>
</tr>
<tr>
<td>Lecronier et al32</td>
<td>17</td>
<td>Q fever, Mediterranean spotted fever</td>
<td>Doxycycline; +/- levofoxacin; IVIG, hydroxychloroquine, corticosteroids</td>
<td>0%</td>
<td>all patients recovered</td>
</tr>
<tr>
<td>Loa et al33</td>
<td>2</td>
<td>following kidney transplant for FSGs; disseminated histoplasmosis</td>
<td>IV liposomal Amphotericin B, oralitraconazole (for 12 months)</td>
<td>0% in 10-month follow up</td>
<td>-</td>
</tr>
<tr>
<td>Machaczka et al34</td>
<td>8</td>
<td>CLL, Multiple Myeloma, Waldenstroms, T-cell lymphoma, Hodgkin’s Lymphoma</td>
<td>IVIG and corticosteroids; HLH-94 protocol</td>
<td>88% over 13 months of follow up</td>
<td>1 week to 13 months</td>
</tr>
<tr>
<td>Mayson et al35</td>
<td>2</td>
<td>EBV, T-cell lymphoma</td>
<td>HLH 2004 protocol; IVIG, corticosteroids</td>
<td>0% at 3 weeks post-HLH diagnosis</td>
<td>-</td>
</tr>
<tr>
<td>Article</td>
<td>Number of patients reported</td>
<td>Suspected etiology of HLH</td>
<td>Chemotherapeutic regimen and dosage; Adjunct therapy</td>
<td>Mortality rate if reported</td>
<td>Time to death if reported</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Miguel et al<sup>36</sup></td>
<td>2</td>
<td>CMV infection in patient on azathioprine for Crohn's disease</td>
<td>IVIG, corticosteroids, antivirals (gancoclovir, valganciclovir)</td>
<td>0% over 8-and 18-month follow up respectively</td>
<td>-</td>
</tr>
<tr>
<td>Mitra et al<sup>37</sup></td>
<td>3</td>
<td>FHL, tuberculous, diffuse non-Hodgkin T-cell lymphoma</td>
<td>patient 1: only supportive treatment; patient 2: four-drug anti-mycobacterial for 6 months; patient 3: CHOP protocol</td>
<td>67% over 30-days</td>
<td>median: 14 days</td>
</tr>
<tr>
<td>Nieto-Ríos et al<sup>38</sup></td>
<td>2</td>
<td>Disseminated histoplasmosis; kidney transplant</td>
<td>Amphotericin B and itraconazole; immunosuppressant therapy: alemtuzumab induction and maintenance with mycophenolate and cyclosporine / tacrolimus</td>
<td>50% within 3 days</td>
<td>-</td>
</tr>
<tr>
<td>Okabe et al<sup>39</sup></td>
<td>3</td>
<td>EBV, sarcoidosis</td>
<td>IVIG. Others: infliximab, daclizumab, dexamethasone, and cyclosporine</td>
<td>100% within 12 days</td>
<td>-</td>
</tr>
<tr>
<td>Premaratna et al<sup>40</sup></td>
<td>2</td>
<td>Rickettsial infections; Orientia tsutsugamushi and Rickettsia conorii</td>
<td>Doxycycline</td>
<td>0%</td>
<td>(Hematological recovery in 72-96 hrs of initiating treatment)</td>
</tr>
<tr>
<td>Rajagopala et al<sup>41</sup></td>
<td>10</td>
<td>EBV, leishmania, leptospirosis, Parvo B19, SLE, tuberculosis, invasive mucormycosis</td>
<td>HLH 2004 protocol, corticosteroid, IVIG; Other: antiviral, antimalarial, antimycobacterial TB, amphotericin</td>
<td>70% died in ICU; 80% in-hospital</td>
<td>ICU LOS (5 hrs to 15 days); hosp LOS: 2-21 days</td>
</tr>
<tr>
<td>Raschke et al<sup>42</sup></td>
<td>3</td>
<td>suspected bacterial infection</td>
<td>HLH 2004 protocol</td>
<td>100% mortality</td>
<td>-</td>
</tr>
<tr>
<td>Re et al<sup>43</sup></td>
<td>2</td>
<td>Human herpesvirus 8 (HHV-8) / Kaposi sarcoma-associated herpesvirus (KSHV); CMV</td>
<td>IVIG, corticosteroids, antivirals (gancoclovir, acyclovir)</td>
<td>100%</td>
<td>unknown</td>
</tr>
<tr>
<td>Shabbir et al<sup>44</sup></td>
<td>18</td>
<td>haematological malignancies, post-autologous stem cell transplant, infection, rheumatologic illness, sickle cell disease, post-orthotopic liver transplant</td>
<td>Etoposide, IVIG, cyclophosphamide. Immunosuppressants: corticosteroids +/- cyclosporine</td>
<td>72%</td>
<td>median survival: 35 days</td>
</tr>
<tr>
<td>Soyama et al<sup>45</sup></td>
<td>2</td>
<td>chronic hepatitis C infection with HCC, now post liver transplantation; chronic hepatitis B with HCC</td>
<td>IVIG, corticosteroid; GM-CSF, entacavir</td>
<td>100% mortality within 5 months of diagnosis</td>
<td>-</td>
</tr>
<tr>
<td>Takeoka et al<sup>46</sup></td>
<td>2</td>
<td>EBV; T cell lymphoma</td>
<td>patient 1: dexamethasone, acyclovir and etoposide; patient 2: CHOP regimen</td>
<td>100% within 4 months</td>
<td>mean time: 3 months</td>
</tr>
<tr>
<td>Ueda et al<sup>47</sup></td>
<td>16</td>
<td>SLE</td>
<td>intravenous cyclophosphamide. Pulsed corticosteroid, IVIG, plasmapheresis, azathioprine / tacrolimus / rituximab</td>
<td>13%</td>
<td>unknown</td>
</tr>
</tbody>
</table>

Segue...
HLH: case series and literature review

Pathogenesis

The key pathogenic feature of HLH is hypercytokinemia. Foreign materials, such as organisms and tumors, activate cytotoxic T lymphocytes (CTL) and natural killer cells (NK) cells. When activated, these cells form secretory lysosomes, which contain perforin and granzyme B. Perforin makes pores in the surface of target cells and granzyme B enters the target cell to stimulate apoptosis. These activated CTL and NK cells also release numerous cytokines including interferon-gamma, Tumor necrosis factor (TNF)-alpha, interleukin-6 (IL-6), and colony-stimulating factor which stimulate bone marrow macrophages (55). In primary HLH, NK cells and CTL fail to eliminate their targets leading to sustained inflammatory response, continued activation of macrophages, and production of cytokines (1). In secondary HLH (sHLH), macrophages are activated as a result of an inciting immunogenic condition or agent. Hypercytokinemia leads to prolonged fevers, fatigue and they down regulate the expression of CD47 on the surface of hematopoietic cells. Self-recognition to prevent phagocytosis is regulated by the CD47-SIRPA (signal regulatory protein) interaction (56,57). Down regulation of CD47 therefore leads to an imbalance favoring pro-phagocytic factors, such as calreticulin. Macrophages become activated and engulf erythrocytes, leukocytes, platelets, and their precursors in the marrow as well as other cells which might lack CD47, such as lymphoma cells (58). This engulfment is responsible for cytopenias in patients with HLH.

Diagnostic criteria (1)

Diagnosis of HLH is made if 5 of the following 8 criteria are met or a molecular defect consistent with HLH is identified (1). Clinical criteria: fever (> 38.5 °C); usually present in > 90% of patients or splenomegaly. Laboratory criteria: cytopenia (affecting 2 of 3 lineages in peripheral blood); hypertriglyceridemia (fasting > 265 mg/dL) or hypofibrinogenemia (< 150 mg/dL); low or absent NK cells activity; hyperferritinemia (> 500 µg/L); and/or high levels of sCD25, also known as IL-2Rα (> 2400 U/mL) which indicates high T-lymphocyte activity. Histopathological criteria: hemophagocytosis in the bone marrow, spleen or lymph nodes with no evidence of malignancy. This is however not a prerequisite for diagnosis. Other laboratory abnormalities that could be present in HLH include EBV IgM or IgG, positive ANA panel, proteinuria from hemophagocytes invading kidney, and high d-dimer (1).

Treatment regimen

In HLH-2004 guideline (1), the recommended regimen includes cyclosporine, etoposide, dexamethasone as well as intrathecal methotrexate. Other regimens that have been used include: CHOP, Cyclophosphamide-Vincristine-Prednisone (COP), Cyclophosphamide-Etoposide-Dexamethasone (CED). Medications like alemtuzumab, intravenous immunoglobulin (IVIG) and antithymocyte globulin have also been used. SCT should be considered for patients with FHL, EBV-triggered HLH, or refractory HLH. Research has shown that selected patients, such as those with high fibrinogen, could also benefit from SCT. Adjunctive treatment included in the HLH-2004 protocol include: rituximab (to be added to regimen if EBV-HLH since it kills CD20 positive B-cells), splenectomy (in patients with massive splenomegaly), rFVIIa (in hyperfibrinogenemia and coagulopathy).
Discussion

The overall evidence suggests that HLH is commonly triggered by infections. HLH could be considered a form of systemic inflammatory response syndrome (SIRS) (41). As with infection-triggered SIRS, early suspicion and prompt treatment is needed to avoid fatality. Diagnosis remains a challenge as HLH may initially present similarly to sepsis and many other common conditions. In these case series, all four patients initially presented with subjective fevers and extreme fatigue which had lasted one to three months. These non-specific and poorly localizing symptoms could be present in a wide variety of conditions. However, the duration of these symptoms is unusual for an acute process like bacterial sepsis in which symptoms would be more likely to progress rapidly. Persistent fevers despite an-
tibacterial therapy and negative cultures as well as cytopenias should raise suspicion for HLH. Routine testing for ferritin in patients who meet these criteria might aid in early diagnosis. After the diagnosis of HLH is made, providers have to decide if to target the underlying cause of the inflammatory response or to suppress the hyper-inflammatory response. Given that > 60% of infection-associated HLH (IA-HLH) cases are usually secondary to EBV, it might be safe to assume EBV is the cause of a patient’s HLH in the absence of malignancy, autoimmune disease or any other obvious infection (23). The appropriate course of action based on the case reports reviewed is varied. As an example, some instances of EBV-HLH improved with addition of rituximab (to HLH-2004 protocol) suggesting targeting underlying EBV infection was therapeutically advantageous. However, in some instances the patients became sicker with worsening cytopenias following chemotherapy initiation (23). Patient 1 as reported here initially showed good response to HLH-2004 chemotheraphy protocol. However, as disease relapsed and patient’s health became more tenuous, the risks of further cycles of chemotherapy seemed to outweigh the benefits. Patient 3’s poor clinical status at presentation and the rapidly progressing deterioration of the health of patient 4 made initiation of relatively toxic chemotherapy clinically inappropriate. Unfortunately, the outcome of these patients was fatal regardless of the treatment course chosen. Future directions should include exploring the various mechanisms by which HLH is stimulated so as to aid in the development of more effective strategies. As shown in a recent publication, monoclonal antibodies to CD47 (anti-hCD47 mAb) in vivo led to phagocytic elimination of multiple tumor types and also prevented metastasis (59). Future research on chemotherapeutic targets of the CD47-SIRPα pathway might also lead to discovery of more potent therapies for HLH. This study adds to the body of the literature by comparing and contrasting the clinical presentation and outcomes of adult patients. The concise review of conditions associated with HLH will also be helpful as clinicians search for the underlying etiology of HLH. In conclusion, HLH is a fatal disease that usually mimics (or is trigged by) other common conditions. Early suspicion and prompt diagnosis is crucial to improved outcomes. Therapy should be individualized considering patient’s baseline health, clinical presentation, and the suspected underlying trigger for HLH.

Abbreviations

HLH, hemophagocytic lymphohistiocytosis; SIRS, systemic inflammatory response syndrome; BM, bone marrow; FHL, familial hemophagocytic lymphohistiocytosis; EBV, Epstein Barr virus; CMV, cytomegalovirus; IVIG, intravenous immunoglobulin; SCT, stem cell transplantation; CTL, Cytotoxic T lymphocytes; NK, natural killer cells.

References

