Component-resolved diagnosis of plant food allergy by SPT

Summary

Background: Fruits and vegetables may contain both labile and stable allergens. The former induce only OAS, whereas stable allergens may induce systemic reactions. Component-resolved diagnosis (CRD) of allergy to plant foods is therefore essential for the clinical management of allergic patients. **Methods:** 80 adults allergic to plant foods underwent SPT with purified natural date palm profilin (Pho d 2), purified Mal d 1, a peach extract containing uniquely LTP, and with a kiwi extract containing uniquely stable allergens. **Results:** 58 (72%) patients were monosensitized: 24 to Mal d 1, 24 to profilin, 7 to LTP, and 3 to kiwi. 22 patients were multi-sensitised: 14 to Mal d 1 and profilin, 2 to Mal d 1 and kiwi, 1 to LTP and profilin, 3 to LTP and Mal d 1, and 2 to LTP, Mal d 1 and profilin. Mal d 1 and LTP sensitisation were associated with apple and peach allergy, respectively, whereas profilin sensitisation was associated with allergy to melon, watermelon, banana, tomato and citrus fruits. 18/21 kiwi-allergic patients were sensitised to one of the cross-reacting allergens, but 2/18 reacted to kiwi-specific allergens as well. **Conclusions:** In patients with allergy to plant-derived foods CRD can be performed by SPT with purified allergen proteins. In the future, the availability of a larger number of purified natural or recombinant allergens for SPT will represent a simple means to classify food-allergic patients properly on the first visit.

Key words

Food allergy, fruits, vegetables, SPT, allergens

Introduction

Plant-derived foods represent by far the most frequent cause of food allergy in adults. One of the main features of fruits and vegetables as food allergens is that they may contain both labile and stable allergen proteins. This fact strongly influences the clinical presentation of allergy to a certain food as well as the risk associated with re-exposure to the offending food and/or to potentially cross-reactive ones. In effect, in virtually all sensitised patients pepsin-sensitive proteins induce only mild local symptoms (i.e., oral allergy syndrome, OAS), whereas more stable allergens reach the gastro-intestinal tract in a biologically active form and may induce potentially severe systemic symptoms (1-4). For the clinician this scenario is further complicated by the fact that, due to unclear reasons, subjects sensitised to stable allergens may have both mild (OAS) and/or systemic symptoms (5). The precise detection of the sensitizing allergen protein(s) in patients allergic to plant-derived foods is therefore extremely important to give patients correct advice about their clinical condition and about the necessity to exclude or not certain foods from their diet. Fruits and vegetables contain 3 main, highly cross-reacting allergens two of which, namely profilin (6-9) and pro-
teins homologous to Bet v 1 (7,10,11), are extremely pepsin-sensitive whereas one, the non-specific lipid transfer protein (LTP), is very heat- and pepsin-stable (12-14). Up to now, in normal clinical settings the detection of sensitisation to these allergens has been based on indirect parameters such as the presence/absence of birch pollen hypersensitivity and/or the presence of hypersensitivity to many botanically unrelated pollens, suggestive of profilin hypersensitivity (these aspects have been reviewed in [15]). Another plant derived food that is causing an increasing number of allergies is kiwi. Again, prognosis of kiwi allergy is variable as allergic patients can be birch-pollen sensitised subjects (due to sensitisation to Bet v 1-homologous proteins) (16), profilin reactors (17), sensitised to kiwi-specific allergens (e.g. Act c 1) (18), or may have a latex-fruit syndrome (19); the 2 latter categories have theoretically a more risky clinical condition.

In recent years an increasing number of allergenic molecules have been sequenced and cloned, and are now available for routine in-vitro diagnostics; however, at the present most of these proteins are airborne allergens and most of the few available food allergens are of animal origin. The possibility to detect the sensitising allergen on the first visit in patients with a history of allergy to fruits and/or vegetable would represent a real step forward in the clinical practice both in terms of clinical care and of reduction of costs. The present study evaluated the effectiveness of component resolved diagnosis of plant-food allergy by means of SPT with extracts of plant-derived foods containing one single allergen protein due either to the loss of labile allergens during the preparation process, or to a proper purification procedure of the relevant protein.

Skin tests

SPT with commercial extracts of pollens present in this geographical area, including grass, mugwort, ragweed, pellitory, plantain, birch, olive (all 50000 SBU/ml; Allergopharma, Reinbek, Germany) and cypress (30 HEP, ALK-Abello, Spain) were carried out in all patients. Further, all patients underwent SPT with purified natural date palm profilin (Pho d 2; 50 µg/ml; Alk Abello, Madrid, Spain; see beyond), with an apple extract containing uniquely Mal d 1 (2 µg/ml; ALK-Abello; see beyond), with a commercial peach extract containing uniquely lipid transfer protein (LTP 30 µg/ml; ALK-Abello)(15, 16), with a kiwi extract (5% w/v; ALK-Abello), and with a commercial natural rubber latex extract (500 µg protein/ml; ALK-Abello).

In a preliminary study on 36 patients with kiwi allergy positive on SPT with fresh kiwi by prick-prick technique the SPT with this commercial kiwi extract scored positive only in 8 cases, all without pollen-food allergy syndrome (5 patients were monosensitized to kiwi, 2 has latex-fruit allergy syndrome, and 1 patient was sensitized to LTP), whereas it did not induce any skin reaction in 28 patients with pollen-food allergy syndrome many of whom showing high levels of kiwi-specific IgE on CAP. It was therefore concluded that, similarly to apple extracts for SPT (10,20), this kiwi extract lacks both the allergen homologous to Bet v 1 and profilin, and contains uniquely stable allergens.

All SPT were performed using disposable 1 mm tip lancets (ALK-Abello). Readings were taken at 15 min, and a mean wheal diameter of 3 mm or more was considered positive (21). SPT with histamine 10 mg/ml and saline were carried out as positive and negative control, respectively.

Preparation of apple and Pho d 2 extracts

Lyophilized apple peels were extracted for 90 minutes at 4º with 0.1 mol/L sodium carbonate/bicarbonate, 0.1 mol/L Na Cl, pH 9.4. Extracts were centrifuged (1000 rpm, 30min, 4ºC) and 50% glycerol was added. Apple extract contained 2 µg/ml of Mal d 1 as determined by ELISA, Mal d 4 < 0.1 µg/ml , Mal d 3 < 0.05 µg/ml. Natural profilin Pho d 2 was purified from date palm extract.
tract by affinity chromatography with a poly-L-proline-
Sepharose (22); purity was checked by SDS PAGE, mass
spectrometry and amino acid analysis. The concentration
of Pho d 2 in the extract was 50 µg/ml.

Statistics

Associations were assessed by the chi-square test with
Yates’ correction. P values < 0.05 were considered statisti-
cally significant.

Results

Clinical presentation of food allergy

All patients reported oral allergy syndrome as the only
symptom of food allergy except 4 who also had urticaria
(2 cases), asthma, rhinitis and gastro enteric symptoms (1
case) and gastric pain (1 case).

SPT with food allergens and clinical associations

All 80 patients scored positive with at least one out of 4
allergens tested (namely, profilin, Mal d 1, LTP, and kiwi-
specific allergens). Results are summarized in table 1. Fifty-eight/80 (72%) patients turned out to be monosen-
sitised (24 to profilin, 24 to Mal d 1, 7 to LTP, and 3 to
kiwi), whereas 22 were sensitised to > 1 allergen (14 Mal
d 1 + profilin; 3 Mal d 1 + LTP; 2 Mal d 1 + Kiwi; 2 Mal
d 1 + profilin + LTP; and 1 profilin + LTP). No patient
scored positive on SPT with latex extract. In patients sensitised to the 3 cross-reacting allergens (Mal d 1, profilin, and LTP) the pattern of offending
foods changed with the sensitising allergen (Tab. 2). Ap-
ple allergy was significantly associated with sensitisation
to Mal d 1; 30/45 (67%) Mal d 1-hypersensitive subjects
had apple allergy (p < 0.05). Peach allergy was associated
with sensitisation to lipid transfer protein; 12/13 (92%)
LTP-hypersensitive patients were allergic to this fruit (p <
0.05). Finally allergy to melon, watermelon, citrus fruit,
banana, and tomato was significantly associated with pro-
filin sensitisation; of 41 profilin-hypersensitive patients 24
(58%), 14(34%), 19 (46%), 10 (24%), and 9 (22%) were
allergic to melon, watermelon, tomato, banana, and citrus
fruits, respectively (p < 0.05-0.001).

The 3 patients reporting oral allergy syndrome plus
food-induced urticaria (n = 2) or plus asthma, rhinitis,
and gastro enteric symptoms (n = 1) were sensitised to
LTP. The patient reporting OAS and gastric pain was
monosensitised to kiwi. Clinically, patients sensitised to
kiwi-specific proteins reported a much more severe oral
symptoms (frequently associated with oedema of the
lips, tongue, and pharynx and with tightness of throat)
than kiwi-allergic patients sensitised to Mal d 1 and/or
profilin.

Association with pollen hypersensitivity

Hypersensitivity to seasonal airborne allergens tested is
shown in table 3. Not surprisingly, all Mal d 1-sensitized
patients were allergic to birch pollen, and profilin-hyper-
sensitive patients were sensitised to most pollens, with
the partial exception of Parietaria and cypress. Most LTP-al-
lergic patients were sensitised to grass pollen. In contrast,
patients monosensitized to kiwi were not sensitised to
seasonal allergens with the exception of one subject sensi-
tised to grass pollen.

<table>
<thead>
<tr>
<th>Table 1 - Skin reactivity and clinical symptoms in 80 consecutive patients with plant-food allergy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin reactivity</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Mal d 1 only</td>
</tr>
<tr>
<td>Profilin only</td>
</tr>
<tr>
<td>LTP only</td>
</tr>
<tr>
<td>Mal d 1 + Profilin</td>
</tr>
<tr>
<td>Profilin + LTP</td>
</tr>
<tr>
<td>Mal d 1 + Profilin + LTP</td>
</tr>
<tr>
<td>Mal d 1 + LTP</td>
</tr>
<tr>
<td>Mal d 1 + Kiwi</td>
</tr>
<tr>
<td>Kiwi only</td>
</tr>
</tbody>
</table>

R: rhinitis; A: asthma; G: gastrointestinal
Discussion

The present study highlights the importance of being able to carry out a component-resolved diagnosis in-vivo when the patient with plant food allergy is seen for the first time in the clinic. In keeping with previous studies, all patients sensitised to labile allergens had oral allergy syndrome as the only clinical expression of their food allergy (10,23); however, also most of the patients sensitised to stable vegetable food allergens in this study reported oral allergy syndrome. Further, 22/80 (28%) patients were multi-sensitised to vegetable food allergens, and 8 of these subjects reacted to both labile (Mal d 1 and/or profilin) and stable (LTP and/or kiwi) allergen proteins. In these patients component-resolved diagnosis has been essential to give the correct advice about the possibility to maintain (e.g., in subjects sensitised to labile proteins) or the necessity to change dietary habits (e.g. avoidance of kiwi fruit in specifically sensitised subjects; avoidance of whole fresh Rosaceae with or without tree nuts, as well as avoidance of commercial Rosaceae fruit juices in LTP-allergic patients), or how to reduce allergenicity of potentially offending foods (e.g. to try peeled Rosaceae fruits in LTP-allergic subjects [24]; to eat fruit salads and drink

Table 2 - Offending foods and statistical associations in 80 patients allergic to plant-derived foods sensitised to different allergen proteins

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>P</th>
<th>L</th>
<th>MP</th>
<th>PL</th>
<th>MPL</th>
<th>ML</th>
<th>MK</th>
<th>K</th>
<th>M</th>
<th>P</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>16</td>
<td>9</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td><0.05</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Pear</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Peach</td>
<td>12</td>
<td>12</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td><0.05</td>
</tr>
<tr>
<td>Cherry</td>
<td>12</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Plum</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Apricot</td>
<td>7</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Medlar</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Almond</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Hazelnut</td>
<td>10</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Walnut</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Peanut</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Melon</td>
<td>2</td>
<td>17</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td><0.001</td>
<td>NS</td>
</tr>
<tr>
<td>Watermelon</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td><0.01</td>
<td>NS</td>
</tr>
<tr>
<td>Orange/tang</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td><0.05</td>
<td>NS</td>
</tr>
<tr>
<td>Grapes</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Pineapple</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Banana</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td><0.01</td>
<td>NS</td>
</tr>
<tr>
<td>Carrot</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Celery</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Fennel</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Tomato</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td><0.001</td>
<td>NS</td>
</tr>
<tr>
<td>Eggplant</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Lettuce</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Kiwi</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Strawberry</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Zucchini</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Persimmon</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Coconut</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

M: Mal d 1; P: Profilin; L: Lipid transfer protein; K: Kiwi specific allergens
commercial fruit juices in patients sensitised to labile allergens [15]). The validity of the diagnostic means used in this study is further, indirectly confirmed by the observed associations. Apple has been known as the clinical marker of birch/food allergy syndrome for a long time (25); similarly, peach allergy is a “trademark” of LTP hypersensitivity (26, 27), and the association between profilin sensitisation and allergy to melon, watermelon, citrus fruit, banana, and tomato is in keeping with previous studies (28, 29).

The panel of plant-food allergens used in this study was obviously incomplete as relevant cross-reacting allergens...
such as the seed storage proteins, including 2S-albumins, vicilins, and legumins, were missing. Nonetheless, no patients out of the 80 consecutive ones included in the present study reported a history of systemic reactions to tree nuts and/or seeds, which suggests that (at least in this area) allergy to seed storage proteins is much less frequent than allergy to Bet v 1-homologue proteins, profilins, LTP or kiwi. Hopefully, these purified proteins as well will be available for in-vivo testing in the future. A summary of the clinical use of these 4 allergens is suggested in figure 1.

One further aspect that is worth discussing is the advantage of performing SPT with purified proteins rather than carrying out a molecular analysis by in-vitro tests. Presently, both the immunoCAP (Phadia, Uppsala, Sweden) and the protein micro-array ISAC (VBC Genomics- Phadia) include recombinant profilin, Bet v 1-homologous proteins and LTP (Pru p 3 and others) in their panels. The latter also includes kiwi-specific allergens. However, both assays are more expensive than a simple SPT. Particularly, the micro-array is a “take it or leave it” test in which one is forced to measure IgE specific for > 90 allergen proteins, even if the diagnostic question deals with 3–4 allergens; the immunoCAP is still unable to produce a differential diagnosis between primary or secondary kiwi allergy. Finally, the results that both assay produce are not readily available. The immunoblot analysis is another common means to investigate allergenic proteins in-vitro, but it is still not available in most clinical settings.

In conclusion, in recent years molecular biology techniques have much improved the diagnosis of allergy, and several allergen proteins are already available for in-vitro assays, although the number of food allergens still remains limited. Purified food allergen proteins are being (slowly) introduced also for in-vivo testing and this will enormously simplify doctors’ work and improve patients’ care.

References

22. Asturias JA, Ibarrola I, Fernandez J, Arilla MC, Gonzalez-Rioja R, Martinez A. Pho d 2, a major allergen from date palm pollen, is...

25. Lahti A, Bjorksten F, Hannuksela M. Allergy to birch pollen and apple, and cross-reactivity of the allergens studied with the RAST. Allergy 1980; 35: 297-300.

